Solved Example

Q.1	The boiling point of Kr a	nd Rn are	∋–152°C	C and62	2°C respective	ly. The app	roximate	e boiling point of	Xe is
	[1] 107°C	[2]-107	7°C		[3] 50°C		[4] 70°0	C	Ans. [2]
Sol.	According to law of triad	l, the pro	perties o	f middle	elements are a	average of	rest two		
	: boiling point of Xe in a triad of Kr, Xe Rn =								
	(boiling point of Kr + boiling point of Rn) / 2 = $(-152 - 62)/2 = -107^{\circ}C$								
Q.2	Which of the following a	toms and	d ions ar	e isoelec	tronic				
	(a) Al ³⁺	(b) F			(c) Cl⁻		(d) O ^{2–}		
	(e) Na	(f) Mg ²⁺							
	The correct answer is								
	[1] Al ⁺³ , O ⁻² , Mg ⁺²	[2] F, C	l⁻, Na		[3] Al ⁺³ , F, Cl ⁺	_	[4] Non	e of these	Ans. [1]
Sol.	lon or atom	Al ⁺³	F	Cl⁻	O ⁻²	Na	•	Mg ⁺²	
	No. of electrons	10	9	18	10	11	ク	10	
	So, Al ⁺³ , O ⁻² & Mg ⁺² are	e isoelec	tronic.						
Q.3	The bond distance betw	veen C–C	CI in CCI	₄ is 1.76	Å. If atomic ra	dius of C is	0.77 Å,	The atomic rad	us of CI is
	[1] 0.95 Å	[2] 0.55	Å		[3] 0.99Å		[4] 1.05	5 Å	Ans. [3]
Sol.	Bond length of C–Cl	= distar	nce betw	veen the	nuclei of two a	itoms			
	$= r_{\rm C} + r_{\rm Cl}$								
	Given r _C	= 0.77	and r _C +	r _{ci} = 1.7	6 Å				
	\therefore r _{CI} = 1.76 - 0.77 =	: 0.99 Å							
Q.4	Ionization potential of N	a would l	oe nume	rically th	e same as				
	[1] Electron affinity of Na	a+	5		[2] Electroneg	gativity of N	a+		
	[2] Electron affinity of He	e			[4] Ionization potential of Mg				Ans. [1]
Sol.	$Na \rightarrow Na^+ + e$; IE of Na^+	a = +ve							
	Na ⁺ + e \rightarrow Na ; 1E of Na	+ = −ve							
	Both are equal but oppo	osite in na	ature						
Q.5	How much energy in jou of sodium vapours ? Ion	les must iisation e	be need nergy of	ed to con sodium i	vert all the ato s 495 kJ mole	ms of sodiu –1	im to so	dium ions preser	nt in 2.3 mg
	[1] 495 × 10 ⁻⁴ kJ/mol.	[2] 395	× 10 ^{−4} k	J/mol. [3] 495 kJ/mol.		[4] 300	kJ/mol.	Ans. [1]
Sol.	According to the definition	on of ioni	sation e	nergy,					
		Na(g) +	$ E \to N $	a+ (g) + e	9-		I.E. = 4	95 kJ mol ⁻¹	
	The amount of energy n	eeded to	ionise 1	mole of	sodium vapou	ırs = 495 kJ	mole ⁻¹		
	Moles of sodium vapou	rs preser	nt in give	n sample	$e = \frac{2.3 \times 10^{-3}}{23}$	= 1 × 10 ⁻⁴ I	mol		

:. Amount of energy needed to ionise 1×10^{-4} mol of sodium vapours are 495×10^{-4} kJ/mol.

Q.6	Solutions of equal strength of XOH and QOH are prepared. The Ionisation Potential of X and Q are 5.1 and 13.0eV respectively, whereas their Electronegativity are 0.9 and 3.2 respectively. Using the information, spot the incorrect conclusion							
	[1] Reaction of XOH and NH_4CI will produce NH_3							
	[2] Solution of QOH will	give effervesce	ence with N	aHCO ₃				
	[3] Phenolphthalein will	give pink colou	ur with XOF	l solutions				
	[4] The pH of QOH solu	tion will be mo	re than 7				Ans. [4]	
Sol.	According to given data alkali metal. Hence XOH value hence it should be than 7, hence the states	a of I.P, the I.P. H should be an a halogen so (ment that pH c	of X is 5.1 alkali. Sim QOH solutio of QOH is n	eV which i ilarly, the I. on should be nore than 7	s a smaller va P. of Q is 13.0 e hypohalous a is incorrect.	lue, which shows that it eV. Which is comparativ acid. The pH of QOH sho	must be an ely a higher uld be lower	
Q.7	The IP_1 , IP_2 , IP_3 , IP_4 are likely to be	nd IP ₅ of an ele	ement are	7.1 , 14.3, 3	34.5, 46.8, 162	2.2 eV respectively. The	elements is	
	[1] Na	[2] Si		[3] F		[4] Ca	Ans. [2]	
Sol.	The jump in IP values contains four electrons	exist in IP ₅ an in its valence s	d thus rem shell.	noval of fifth	n electron occ	urs from inner shell. Th	us element	
Q.8	IP_1 and IP_2 of Mg are 17	'8 and 348 kca	al mole ^{−1} . T	he energy	required for th	e reaction : Mg \rightarrow Mg ²⁺	+ 2e- is -	
	[1] +170 kcal	[2] +526 kca		[3] –170 k	cal	[4] –526 kcal	Ans. [2]	
Sol.	Removal of two electron	ns (one by one	e) from an a	atom require	es energy = IF	$P_1 + IP_2 = 178 + 348 = 52$	26 kcal.	
Q.9	Calculate the effective n	uclear charge	(Z*) for val	ence shell e	electrons of bro	omine atom		
	[1] 7.6	[2] 13.85		[3] 27.40		[4] 23.75	Ans. [1]	
Sol.	Electronic configuration	of bromine ato	om is					
	1s ² 2s ² 2p ⁶	3s ² 3p ⁶ 3d ¹⁰		4s ² 4p ⁵				
	К	Μ		Ν				
	For valence shell i.e. 4th	h shell electror	ns					
	~	$S = 6 \times 0.35$	+ 18 × 0.8	5 + 10 × 1.	0 = 27.40			
		N-shell	M-shell	K and	l L shell	$Z^* = 35 - 27.40 = 7.60$		
Q.10	The atomic number of the A and C, the nature of b	hree elements oonding is	A,B and C	are x , x + ′	1 and x + 2 , C	is an alkali metal. In a co	ompound of	
	[1] Co-ordinate	[2] Covalent		[3] Ionic		[4] Metallic	Ans. [3]	

Sol. If C is alkali metal, A should be halogen nonmetal.

- Q.11 Which of the following relation is correct
 - [1] 2 I.P. E.A. E.N. = 0[2] 2 I.P. E.N + E.A. = 0[3] 2 E.N. I.P. E.A. = 0[4] E.N. I.P. E.A = 0Ans. [3]

Where E.N. stands for electronegativity. E.A. stands for electron affinity and I.P. stands for lionization potential

Sol.

$$\because E.N. = \frac{I.P. + E.A.}{2}$$

- ∴ 2E.N. = I.P. + E.A. or 2 E.N. I.P. E.A. = 0
- **Q.12** Find out the value of Z_{eff} for nitrogen

	[1] 7	[2] 3.1	[3] 3.90	[4] None	Ans. [3]				
Sol.	Configuration of N ($Z =$	7)							
	(1s ²) , (2s ² 2p ³)			\mathbf{C}					
	There are five electrons	s in the valence shell (n=2	2)	\wedge					
	This is n th shell			Θ					
	. The shielding effect	of all electrons exceptin	g one = $4 \times 0.35 = 1.40$)					
	The shielding effect of two electrons present in the (n-1) shell								
	(1s ²) 2 × 0.85 = 1.70								
	Thus the screening cor	nstant σ = 1.40 + 1.70 =	3.10						
	Hence $Z_{eff} = Z - \sigma = 7$	-3.10 = 3.90	5						
Q.13	The ionization energy o in gaseous state into L	f lithium is 520 kJ mol ^{_1} . T i ⁺ ions is :	The amount of energy re	equired to convert 70 mg o	f lithium atoms				
	[1] 5.2 kJ	[2] 52 kJ	[3] 520 kJ	[4] 52 J	Ans. [1]				
Sol.	70 mg = 70 × 10 ^{−3} g = -	$\frac{70 \times 10^{-3}}{7} \text{ mol} = 1 \times 10^{-2}$	mol						
	• Amount of energy re	equired = $1 \times 10^{-2} \times 520$	kJ = 5.2 kJ						
Q.14	The ionization potentia	l of X⁻ ion is numerically	equal to :						
	[1] The electron affinity	of X atom	[2] The electronegat	ivity of X atom					
	[3] The ionization poten	tial of X	[4] None of these		Ans. [1]				
Sol.	$X + e^- \! \rightarrow \! X^- \! + E A$								
	$X^-\text{+}I\text{E} \rightarrow X \text{+}\text{e}^-$								

		Exe	ercise # 1					
Q.1	Element A of group formula?	VA combines with elem	ent B of group VI A. The	B of group VI A. The resulting compound may have the				
	[1] A ₂ B ₃	[2] A ₃ B ₂	[3] A ₅ B ₆	[4] A ₆ B ₅				
Q.2	According to periodi	c law, the chemical proper	ties of elements are the pe	riodic function of their ?				
	[1] Density	[2] Atomic Number	[3] Mass number	[4] Atomic mass				
Q.3	Zero group was intro	duced by ?						
	[1] Lothar Meyer	[2] Mendeleev	[3] Ramsay	[4] Lockyer				
Q.4	In a periodic table fro	om I group to group VII elec	ctronegativity of elements?					
	[1] Decreases	[2] Increases	[3] Remains constant	[4] All				
Q.5	Highest ionisation po	otential in a period is show	/n by ?	\tilde{c}				
	[1] Alkali metals		[2] Transition elements					
	[3] Halogen		[4] Alkaline earth meta	ls				
Q.6	Halogens have beer	placed in the VII group of	the periodic table because	?				
	[1] They are non-me	tals	[2] They are very reactive	ve				
	[3] They are electron	egative	[4] They have seven ele	ectrons in outermost orbit				
Q.7	On decreasing a gro	up electropositive charact	er of elements ?					
	[1] Increases	[2] Decreases	[3] Remains same	[4] None				
Q.8	The element with the	e highest first ionisation po	otential is :					
	[1] Boron	[2] Carbon	[3] Nitrogen	[4] Oxygen				
Q.9	The ion with highest	radius is ?						
	[1] Na⁺	[2] N ³⁻	[3] F [_]	[4] Al ³⁺				
Q.10	Which pair of eleme	nts is chemically most sin	nilar?					
	[1] Na, Al	[2] Cu, S	[3] Ti, Zr	[4] Zr, Hf				
Q.11	In the series C, N, O	and F, the electronegativ	ity ?					
	[1] Decreases from (C to F	[2] Increases from C to	F				
	[3] Remains constar	nt	[4] Decreases from C to O and then increases					
Q.12	In the long form of pe	eriodic table, the elements	having lowest ionisation po	otential are present in ?				
	[1] I group	[2] IV group	[3] VII group	[4] Zero group				
Q.13	The first ionisation e	nergy is smallest for the at	tom with electronic configu	ration?				
	[1] ns ² np ³	[2] ns ² np ⁴	[3] ns²np⁵	[4] ns ² np ⁶				
Q.14	The law of octaves a	pplies to the following set	of elements ?					
	[1] B, N, C	[2] Be, Mg, Ca	[3] Ar, K, Ca	[4] Se, Te, As				
Q.15	In a period, the alkal	i metals have ?						
	[1] Highest ionisatior	nenergy	[2] Largest atomic radii					
	[3] Highest density		[4] Highest electronegativity					

Q.16	An atom with high elect	tronegativity generally ha	IS ?					
	[1] Tendency to from +	veions	[2] High ionisation potential					
	[3] Large atomic size		[4] Low electron affinity					
Q.17	Elements of I A group g	give colour in Bunsen bur	ner due to :					
	[1] Low I.P		[2] Low M.P					
	[3] Softness		[4] One electron in oute	ermost shell				
Q.18	The correct order of at	omic size is ?						
	[1] Be > C > F > Ne	[2] Be < C < F < Ne	[3] Be > C > F < Ne	[4] F < Ne < Be < C				
Q.19	The first ionisation ene	ergy of Na, Mg, Al and Si i	is in the order ?					
	[1] Na < Mg > Al < Si	[2] Na > Mg > Al > Si	[3] Na < Mg < Al > Si	[4] Na > Mg > Al > Si				
Q.20	The electronegativity o	f the following elements in	ncreases in the order?					
	[1] C, N, Si, P	[2] N, Si, C, P	[3] Si, P, C, N	[4] P, Si, N, C				
Q.21	Which of the following	elements have strong ten	dency to form anions ?	•				
	[1] P, S, Cl	[2] As, Sb, Bi	[3] Fe, Co, Ni	[4] Li, Be, B				
Q.22	The first element of eac	ch period in the periodic t	able has ?					
	[1] Two electrons in the	e first shell	[2] One electron in the	first shell				
	[3] One s-electron in th	e outermost shell	[4] 8 electrons in the ou	utermost shell				
Q.23	In the periodic table, w	ith the increase in atomic	number, the metallic cha	racter of an element ?				
	[1] Decreases in a perio	od and increases in a gro	roup					
	[2] Increases in a perio	d and decreases in a gro	up					
	[3] Increases both in a	period and the group						
	[4] Decreases in a perio	od and the group						
Q.24	A newly discovered ele	ement X is placed in group	o IA of the periodic table b	ecause it forms ?				
	[1] An oxide which is a	cid	[2] A volatile chloride ha	aving formula XCI				
	[3] An ionic chloride hav	ving formula XCI	[4] An insoluble XCO_4					
Q.25	In the periodic table the	e trend of electropositive of	character from Na to Ar?					
	[1] Increases		[2] Decreases					
	[3] Constant		[4] First increases and	then decreases				
Q.26	In the periodic table of	elements, the elements a	re arranged in the order c	of ?				
	[1] Increasing volume		[2] Increasing atomic n	umber				
	[3] Increasing mass nu	mber	[4] Increasing density					
Q.27	Elements of the same	group in the period table	are characterised by the s	same ?				
	[1] Ionisation potential		[2] Electronegativity					
	[3] Electron affinity		[4] Number of valence electrons					

Q.28	Which of the following pairs has elements containing same number of electrons in outermost orbit ?							
	[1] N, O	[2] Na, Cl	[3] As, Bi	[4] Pb, Sb				
Q.29	The elements of II shor	t period are called ?						
	[1] Typical elements	[2] Transition elements	[3] Normal elements	[4] Inert elements				
Q.30	Among the following negative oxidation state	g group of elements, tl es are?	ne one whose elemen	ts can have positive as well as				
	[1] H, F, O	[2] Na, Mg, Al	[3] He, Li, Be	[4] H, Cl, Br				
Q.31	The correct order of rel	ative stability of half filled	and completely filled she	lls is ?				
	[1] $p^3 < d^5 < d^{10} < p^6$	[2] $d^5 > p^3 > d^{10} > p^6$	[3] $d^5 < p^3 < d^{10} < p^6$	[4] $p^3 < d^{10} < d^5 < p^6$				
Q.32	Which has the highest	boiling point?						
	[1] CH ₄	[2] He	[3] H ₂	[4] Xe				
Q.33	The decreasing order	of second ionisation poter	ntial of K, Ca and Ba (Z : I	K = 19, Ca = 20, Ba = 56)				
	[1] K > Ca > Ba	[2] Ca > Ba > K	[3] Ba > K > Ca	[4] K > Ba > Ca				
Q.34	In the long form of perio	odic table all the non-meta	als are placed in ?)				
	[1] s-block	[2] p-block	[3] d-block	[4] f-block				
Q.35	Among the following el	ements, the one having th	e highest ionisation energ	gy ?				
	[1] [Ne] 3s ² 3p ¹	[2] [Ne] 3s ² 3p ³	[3] [Ne] 3s ² 3p ²	[4] [Ar] 3d ¹⁰ 4s ² 4p ³				
Q.36	Which of the following	is formed easily ?	.0.					
	[1] Ca ²⁺	[2] Zn ²⁺	[3] Cl ²⁺	[4] O ²⁺				
Q.37	Which of the following	has least density ?						
	[1] Na	[2] Li	[3] Mg	[4] K				
Q.38	The process requiring	the absorption of energy is	s?					
	$[1] F \to F^{\scriptscriptstyle -}$	[2] H → H ⁻	$[3] \operatorname{Cl} \to \operatorname{Cl}^{\scriptscriptstyle{-}}$	$[4] O \rightarrow O^{2-}$				
Q.39	Which of the following i	s Dobereiner triad?						
	[1] Cl, Br, I	[2] Zn, Cr, Na	[3] Ne, Ar, K	[4] B, C, Si				
Q.40	Which of the following	compounds is more stable	e?					
	[1] Na ₃ N	[2] Li ₃ N	[3] K ₃ N	[4] Rb ₃ N				
Q.41	In Pauling electronega	tivity scale, element next	to fluorine is ?					
	[1] CI	[2] N	[3] O	[4] I				
Q.42	Which of the following	ions forms highly soluble I	hydroxide in water ?					
	[1] K⁺	[2] Zn ²⁺	[3] Al ³⁺	[4] Ca ²⁺				
Q.43	On the basis of valenci	es of elements in a group	, the formula of compoun	d formed by tin with fluorine is ?				
	[1] SnF	[2] SnF ₃	[3] SnF ₆	[4] SnF ₄				
Q.44	In II period most acidic	oxide is formed by ?						
	[1] F	[2] N	[3] O	[4] Li				

Q.45	Which of the following a	atoms possesses the sma	Illest volume ?				
	[1] S	[2] Si	[3] P	[4] He			
Q.46	Decreasing order of atc	mic weight is correct of th	e elements given below ?	?			
	[1] Fe > Co > Ni	[2] Ni > Co > Fe	[3] Co > Ni > Fe	[4] Co > Fe > Ni			
Q.47	Chloride of an element	A gives neutral solution in	water. The element in the	e periodic table belongs to			
	[1] Ist group	[2] III group	[3] V group	[4] Ist transition series			
Q.48	Group number and vale	ency has no relation in ?					
	[1] Zero group	[2] First group	[3] IIIrd group	[4] VII group			
Q.49	Lanthanide contraction	can explain ?					
	[1] Atomic number of th	e series	[2] Number of extra nuc	lear electrons			
	[3] Density of the series	5	[4] Ionic radius of series				
Q.50	Pd has exceptional elec	ctronic configuration 4d ¹⁰	° 5s°. It belongs to				
	[1] 4 th group	[2] 6 th group	[3] 10 th group	[4] None of these			
			0				
		C	\mathbf{S}				
		0					
	2	•					
	2						

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	2	3	2	3	4	1	3	2	4	2	1	2	2	2	2	1	3	1	3
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	3	1	3	2	2	4	3	1	4	3	4	1	2	2	1	2	4	1	2
Que.	41	42	43	44	45	46	47	48	49	50										
Ans.	3	1	4	2	4	3	1	1	4	3										

Answer Key - 1

Exercise # 2

Q.1	The first ionisation pote	ential of Na, Mg, Al and Si	follow the order				
	[1] Na > Mg > Al > Si	[2] Na < Mg > Al < Si	[3] Na < Mg < Al < Si	[4] Na = Mg = Al > Si			
Q.2	For the precesses K ⁺ (g	J) <u> </u>	3)				
	[1] Energy is released in	n (I) and absorbed in (II)	[2] Energy is absorbed i	n (I) and released in (II)			
	[3] Energy is absorbed	in both the processes	[4] Energy is released in	n both the processes			
03	A = X = X = 2.0 what is	nercent ionic character fo	r a covalent molecule A-I	B A			
QIO	$\frac{11}{46}$	[2] 50	[3] 20	(1 30			
0 ([5] 20				
Q.4	Consider the $M(OH)_3$ formed by all the group 13 elements. The correct sequence of acidic strength of hydroxides [M (OH)_3] is						
	[1] B (OH) ₃ < AI (OH) ₃ >	- Ga (OH) ₃ > In (OH) ₃ > TI	(OH) ₃	>			
	[2] B (OH) ₃ > TI(OH) ₃ >	$AI(OH)_{3} > In(OH)_{3} > Ga($	OH) ₃				
	[3] AI (OH) ₃ > Ga (OH) ₃	₃ > B (OH) ₃ > In (OH) ₃ > TI	(OH) ₃				
	[4] B (OH) ₃ > AI (OH) ₃ >	- Ga (OH) ₃ > In (OH) ₃ > TI	(OH) ₃				
Q.5	According to Allred and	Rochow scale, the electr	onegativity is given by he	expression			
	[1] First ionisation ener	gy + First electron affinity					
	[2] First ionisation ener	gy – First electron affinity					
	[3] 0.359 Zr ⁻² + 0.744 (v	where Z is effective nuclea	ar charge and r is the mea	n radius of the orbital)			
	[4] None of the above	<u> </u>					
Q.6	An increase in both ato	omic and ionic radii with at	omic number occurs in a	ny group of the periodic table and in			
	accordance with this, th	e ionic radii of Ti (IV) and 75 Å Which is almost th	Zr (IV) ions are 0.68 A an e same as that for Zr (IV)	nd 0.74 A respectively, but for Hf (IV)			
	[1] Greater degree of co	ovalency in compounds of	Hf ⁴				
	[2] Lanthanide contract	ion					
	[3] Difference in the coo	ordination number of Zn4+	and Hf⁴+ in their compoun	ds			
	[4] Actinide contraction						
Q.7	Pick out the isoelectror	nic series form the followir	ng				
	I. CH ₃ +	II. NH ₃	III. CH ₃ -	IV. H₃O⁺			
	Correct answer is :	-	-				
	[1] III & IV	[2] &	[3] II, III & IV	[4] III & IV			
Q.8	Which of the following of	oxyacids act as reducing	agent				
	[1] H ₄ P ₂ O ₇	$[2] H_4 P_2 O_6$	[3] H ₃ PO ₄	[4] H ₃ PO ₃			

(a) Liberation of energy (b) Formation of ion (c) Proton/electron ratio ecreases (d) Stabilizing the species Code is [1] a, d [2] b, c, d [3] a, b, d [4] a, b, c Q.10 Match list - I with list - I and choose the correct spectron the code given below [4] a, b, c Q.11 Match list - I with list - I and choose the correct spectron the code given below [4] a, b, c Q.11 Match list - I with list - I and choose the correct spectron the code given below [4] a, b, c Q.12 Match list - I with list - I and choose the correct spectron the code given below [4] a, b, c (A) Strongest reductation a. aurum [5] (C) Coinage metal [5] (C) Coinage metal [6] (C) Coinage metal (C) Coinage metal c. chromium [6] (D) Lanthanide [6] (C) (D) [7] (D) (A) (B) (C) (D) [7] (D) [7] (D) [1] d c a [8] (D) [9] (D) [9] (D) [2] a b c [9] (D) [9] (D) [9] (D) [2] a a c [9] (D) [9] (D) [9] (D) [4] b c a [9] (D) [9	
(c) Proton/electron ratio decreases (d) Stabilizing the species Code is [1] a, d [2] b, c, d [3] a, b, d [4] a, b, c Q.10 Match list - I with list - II and choose the correct and the code given below [4] a, b, c List - I List - I List - I (A) Strongest reductant a. aurum (B) Half filled d-orbital b. cerium (C) Coinage metal c. chromium (D) Lanthanide d. iodide ion Code is - (A) (A) (B) (I] d c [2] a b [3] d a [3] d a [4] b c [3] d a [4] b c	
Code is [1] a, d [2] b, c, d [3] a, b, d [4] a, b, c Q.10 Match list - I with list - I and choose the correct answer from the code given below List - 1 List - I (A) Strongest reductant a. aurum (B) Half filled d-orbital b. cerium (C) Coinage metal c. chromium (D) Lanthanide d. iodide ion Code is - (A) (A) (B) (I] d c (A) (B) (I] d c (A) (B) (C) (D) (A) (B) (B) (C) (D) Lanthanide b (A) (B) (I) (A) c (A) (B) (I) (A) c (I) (A) b (I) (A) c	
[1] a, d [2] b, c, d [3] a, b, d [4] a, b, c Q.10 Match list - I with list - I with coose the correct swer from the code given below List - I List - I (A) Strongest reductant a. aurum (B) Half filled d-orbital b. cerium (C) Coinage metal c. chromium (D) Lanthanide d. iodide ion Code is - (A) (A) (B) (I) 1 d c (A) (B) (I) 2 anthanide c (A) (B) (C) (D) [1] d c (A) (B) (I) 2 anthanide b (A) (B) (C) (D) [1] d c (A) (B) (I) 3 d a (A) (A) (B) (C) (D) (D) (I) 4 (A) (I) 5 (A) (I) 4 (A) (I) 5 (A) (I) 6 (A) (I) 7	
Match list - I with list - I and choose the correct swer from the code given below List - I List - I List - I List - I (A) Strongest reductant a. aurum (B) Half filled d-orbital b. cerium (C) Coinage metal c. chromium (D) Lanthanide d. iodide ion Code is - (D) (A) (B) (C) (D) (A) (B) (C) (D) (D) Lanthanide a b (D) (A) (B) (C) (D) (A) (B) (C) (D) (J) d c a b (A) (B) (C) (D) (J) d c a b (J) d c a b (J) d a b b (J) d c a b b (J) d c a b b (J) d a b b b (J) d c a b b	
List - I List- II (A) Strongest reductant a. aurum (B) Half filled d-orbital b. cerium (C) Coinage metal c. chromium (D) Lanthanide d. iodide ion (D) Lanthanide d. iodide ion Code is - (A) (A) (B) (I) d c (I) d b (I) d c	
(A) Strongest reductant a. aurum (B) Half filled d-orbital b. cerium (C) Coinage metal c. chromium (D) Lanthanide d. iodide ion Code is - (A) (A) (B) (I) d c (A) (B) (I) d c (I) d b (I) d c (I) d b (I) d c (I) d b	
(B) Half filled d-orbital b. cerium (C) Coinage metal c. chromium (D) Lanthanide d. iodide ion Code is - (A) (A) (B) (I) d c (I) d b (I) d c (I) d b (I) d c (I) d b <td< th=""><th></th></td<>	
(C) Coinage metal c. chromium (D) Lanthanide d. iodide ion Code is - (A) (A) (B) [1] d c [2] a b [3] d a [4] b c a b b c [4] b c Triad - 1 [N ³⁻ , O ⁻ , Na ⁺]	
(D) Lanthanide d. iodide ion Code is - (A) (A) (B) [1] d c [2] a b [3] d a [4] b c a b b b [4] b c a b b b [4] b c a b b b [4] b c b b b b b b b b c b b b c b b b c b b b c b b b c b c b c b c b c b c c c c c b c c <	
Code is - (A) (B) (C) (D) [1] d c a b [2] a b c d [3] d a c b [4] b c a b Q.11 Triad - I [N ³⁻ , O ⁻ , Na ⁺] V V	
(A) (B) (C) (D) [1] d c a b [2] a b c d [3] d a c b [4] b c a b	
[1] d c a b [2] a b c d [3] d a c b [4] b c a b	
[2] a b c d b [3] d a c b [4] b c a b b Q.11 Triad - I [N ³⁻ , O ⁻ , Na ⁺]	
[4] b c a b Q.11 Triad - I [N ³⁻ , O ⁻ , Na ⁺]	
Q.11 Triad - I [N ^{3−} , O [−] , Na ⁺]	
Choose the species of lowest IP from thad-r and the species of highest IP from thad - If respectively	
[1] N³- , O⁺ [2] Na⁺, C⁺ [3] N³- , N⁻ [4] O⁻, C⁺	
Q.12 False statement for periodic classification of elements is	
[1] The properties of the elements are periodic function of their atomic numbers	
[2] No. of nonmetallic elements is less than the no. of metallic elements	
[3] First ionization energy of elements does not change continuously with increasing of atomic no. in a period.	
[4] d-subshell is filled by directional electron with increasing atomic no. of transition elements.	
Q.13 Element Hg has two oxidation states Hg ⁺¹ & Hg ⁺² . The right order of radii of these ions	
[1] $Hg^{+1} > Hg^{+2}$ [2] $Hg^{+2} > Hg^{+1}$ [3] $Hg^{+1} = Hg^{+2}$ [3] $Hg^{+2} \ge Hg^{+1}$	
Q.14 Match list I with list II & then select the correct answer from the codes given below	
List - I List - II	
(A) Increasing atomic size (a) CI < O < F	
(B) Decreasing atomic radius (b) B > Be > Li	
(C) Increasing electronegativity (c) Si < Al < Mg	
(D) Decreasing effective nuclear charge (d) N > O > F	
Codes	
A B C D A B C D	
[1] c d a b [2] d b c a	
[3] a c b d [4] b a d c	

Q.15	Element A,B,C,D belon atomic numbers of A,B,	g to the same group. Th C,D are (Z–x) , (Z + 2x +	e basic character of their 2), Z, (Z + x) respectively	oxides will be in which order if the
	[1] A < B > C < D	[2] A > B > C > D	[3] B > D > C > A	[4] B > C > D > A
Q.16	First, second third and f be formed is	ourth I.P. values in e.v. of	M are 5.1 , 17.9, 23.9, 12	0 respectively. The ion which would
	[1] M ⁺³	[2] M ⁺²	[3] M ⁺⁴	[4] M ⁺¹ and M ⁺²
Q.17	The electronic configura	ation of four elements L,P,	Q and R are given below	
	$L = 1s^2$, $2s^22p^4$		$Q = 1s^2$, $2s^22p^6$, $3s^23p^6$	5
	$P = 1s^2$, $2s^22p^6$, $3s^1$		$R = 1s^2, 2s^22p^6, 3s^2$	
	The formula of the ionic	compounds that can be f	ormed between these ele	ments are
	[1] L ₂ P, RL, PQ, R ₂ Q	[2] LP , L , PQ, RQ	[3] P_2L , RL, PQ, RQ_2	[4] LP, R ₂ L, P ₂ Q, RQ
Q.18	X–X bond length is 1.0 respectively the C–X bo	0 Å and C–C bond lengtl and length is likely to be	h is 1.54 Å. If electroneg	ativities of X and C are 3.0 and 2.0
	[1] 1.27	[2] 1.28	[3] 1.18	[4] 1.08
Q.19	If $a = NO_2$, $b = K_2O$, c	= ZnO		N
	Arrange the above com	pounds in the decreasing	order of basicity	
	[1] a , b, c	[2] b , c, a	[3] c , b , a	[4] a , c, b
Q.20	All elements in the same	e group of the periodic tal	ole have the same	
	[1] Number of electrons		[2] Number of valence e	lectrons
	[3] Atomic weight	C	[4] Atomic number	
Q.21	Which of the following p	air have equal number of	electrons in the outermos	st orbit
	[1] N–O	[2] Na-Ca	[3] As –Bi	[4] Pb – Sb
Q.22	The elements increasing	g order of I.P are		
	[1] P , S , Cl , Ar	[2] Ar, Cl, S, P	[3] S, P , Cl, Ar	[4] Ar, P, S, Cl
Q.23	With respect to chlorine	, hydrogen will be		
	[1] electropositive	•	[2] Electronegative	
	[3] Neutral		[4] None of these	
Q.24	Which of the following t	ransition metal cation has	s maximum unpaired elec	ctrons
	(!) Mn ²⁺	[2] Fe ²⁺	[3] Co ²⁺	[4] Ni ²⁺
Q.25	In the process $CI_{(g)}$ + e	$\xrightarrow{\Delta H}$ Cl ⁻ _(g) ; ΔH is		
	[1] Positive	[2] Negative	[3] Zero	[4] Unpredictable
Q.26	General electronic confi	iguration of the transition	elements is given by	
	[1] ns ² nd ¹⁻¹⁰	[2] ns ² , np ⁶ , nd ^{1–10}	[3] (n–1) d ^{1–10} np ⁶	[4] (n–1) d ^{1–10} , ns ²
Q.27	Element with electronic	c configuration 1s ² , 2s ² , eriodic table	2p ⁶ , 3s ² , 3p ⁶ , 3d ¹⁰ , 4s ² ,	$4p^6$, $4d^{10}$, $5s^2,5p^3$ belongs to be
	[1] IIIA	[2] V A	[3] V B	[4] III B

Q.28	In which of the following	process energy liberated	liberated							
	[1] Cl \rightarrow Cl ⁺ + e		$[2] \ HCl \rightarrow H^{\scriptscriptstyle +} + Cl^{\scriptscriptstyle -}$							
	$[3] \operatorname{CI} + e \to \operatorname{CI}^{\scriptscriptstyle{-}}$		$[4] \text{ O}^{-} + e \rightarrow \text{O}^{2-}$							
Q.29	The element with (n-1)	s ² p ⁶ d ¹⁰ , ns ² p ⁵ outer config	guration is likely to be							
	[1] Alkali metal		[2] Chalocgen							
	[3] Transition metal		[4] Halogen							
Q.30	Z = 21, 89, 49, 5, 39, 79) in this group separate th	e elements belonging to	the same group of the periodic table						
	[1] 89, 21, 39	[2] 5, 49, 79	[3] 5, 21, 39	[4] None of them						
Q.31	I.P. of oxygen and nitro	gen respectively would be	(in eV)							
	[1] 13.6 , 14.6	[2] 13.6, 13.6	[3] 14.6, 13.6	[4] 14.6, 14.6						
Q.32	Electron affinity of carbo	on is greater than nitroger	en because							
	[1] Carbon shows cater	nation property		0						
	[2] Entering electron oc	cupies 2p orbital of carbo	in V							
	[3] Carbon accept one e	electron and assumes (He	e) $2s^2 2p_x^{1} 2p_y^{1} 2p_z^{1}$ structu	re						
	[4] All the above are co	rrect								
Q.33	Which of the following s	statement about transurar	nic elements is incorrect							
	[1] These are all synthe	etic elements	\sim							
	[2] These are elements	of atomic number 93 and	beyond							
	[3] elements from 90 to	lawrencium are called ac	tinones							
	[4] These are part of thi	rd transition series								
	NNN	reelli								

													_							
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	4	1	4	3	2	3	4	4	1	1	3	1	1	3	1	3	3	2	2
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33							
Ans.	3	3	1	1	2	4	2	3	4	1	1	3	4							

Answer Key - 2

Exercise # 3

Q.1	The energy required to r	emove an electron of a gas	seous atom from its groun	d state is called	[CPMT 1989, 94]				
	[1] Potential energy	[2] Ionization energy	[3] Electrode potential	[4] Activation e	nergy				
Q.2	Which of the fallowing s	statement concerning lant	hanides elements is false	ə -	[CBSE 1994]				
	[1] Lanthanides are sep	arated from one another b	by ion exchange method						
	[2] Ionic radii of trivalen	t lanthanides steadily incr	eases with increase in th	e atomic numbe	r				
	[3] All lanthanides are h	nighly dense metals			-				
	[4] More characteristic	oxidation state of lanthan	ide element is +3						
Q.3	The electron affinity of -				[CPMT 1994]				
	[1] Carbon is greater that	an oxygen	[2] Sulphur is less than	oxygen					
	[3] lodine is greater than	n bromine	[4] Bromine is less thar) chlorine					
Q.4	Which one of the follow	ing represents the electro	nic configuration of the m	nost electropositi	ve element				
				[AIIMS 19	82, CPMT 1994]				
	[1] [He] 2s ¹	[2] [Xe] 6s1	[3] [He] 2s ²	[4] [Xe] 6s ²					
Q.5	In which of the following	g pairs the difference betw	veen the covalent radii of	the two metals is	maximum				
			<u>.</u>		[MP PET 1994]				
	[1] K, Ca	[2] Mn, Fe	[3] Co, Ni	[4] Cr, Mn					
Q.6	On pauling scale which	of the following does not	have electronegativity \geq	3.0 -	[MP PET 1994]				
	[1] Oxygen	[2] Nitrogen	[3] Chlorine	[4] Bromine					
Q.7	Radius of the isoelectro	onic species			[MP PET 1994]				
	[1] Increases with the in	crease of nuclear charge							
	[2] Decreases with the i	ncrease of nuclear charge	e						
	[3] Is the same for all								
	[4] First increases and t	then decreases							
Q.8	The electronic configuration which is just below the a	ation of an element is 1s², above element in the perio	2s², 2p² , 3s² , 3p³. What odic table	is the atomic nu	mber of the element [CBSE 1995]				
	[1] 33	[2] 34	[3] 31	[4] 49					
Q.9	To which block is relate table -	d an element having elect	tronic configuration 1s ² 2	s² 2pº 3s² 3pº 3d	¹⁰ 4s ¹ in the periodic [MP PMT 1995]				
	[1] s-block	[2] p–block	[3] d–block	[4] f–block					
Q.10	Alkali metals in each pe	eriod have			[MP PMT 1995]				
	[1] smallest size		[2] Lowest ionization potential						
	[3] Highest ionization po	otential	[4] Highest electronegativity						

					PERIODIC-TABLE
Q.11	Which one of the	e elements has the maximum e	electron affinity		[MP PET 1995]
	[1] F	[2] CI	[3] Br	[4] I	
Q.12	The property of	attracting electrons by the halc	ogen atom in a mol	ecule is called	[CPMT 1996]
	[1] Ionisation pot	tential	[2] Electron aff	inity	
	[3] Electronegati	vity	[4] Electronic a	attraction	
Q.13	The amount of e is called	nergy which is released due to	addition of extra el	ectron to the outermo	st orbit of gaseous atom [BHU 1996]
	[1] Electron cap	acity	[2] Electron aff	inity	
	[3] Ionisation por	tential	[4] Electronega	ativity	
Q.14	Lithium shows d	iagonal relationship with			[MP PET 95, 1996]
	[1] AI	[2] Mg	[3] Be	[4] B	
Q.15	All the elements	in a group in the periodic table	e have the same	[MP PET	1996, MP PMT 1996]
	[1] Atomic numb	per	[2] Electronic c	onfiguration	
	[3] Atomic weigh	nt			
	[4] Number of el	ectrons in the outermost shell o	rons for bonding		
Q.16	The first ionisation	on energies of alkaline earth m	etals are higher th	an those of the alkali	metals. This is because
				[MP PET 1996]	
	[1] There is incre	ease in the nuclear charge of th	ne alkaline earth m	netals	
	[2] There is a de	crease in the nuclear charge o	f the alkaline earth	metals	
	[3] There is no c	hange in the nuclear charge			
	[4] None of the a	bove			
Q.17	The electron aff compared to tha	inities of halogens are F = 322 at of F is due to	, CI = 349, Br = 32	4, I= 295 kJ mol⁻¹. Th	e higher value for Cl as [MP PET 1997]
	[1] Weaker elect	ron-electron repulsion in Cl	[2] Higher aton	nic radius of F	
	[2] Smaller elect	ronegativity of F	[4] More vacan	t p-subshell in Cl	
Q.18	The outermost e	lectronic configuration of the m	nost electronegativ	e elements is [MP PE	T 1996 , Raj. PMT 1997]
	[1] ns² np³	[2] ns²np⁴	[3] ns² np⁵	[4] ns ² np ⁶	
Q.19	The incorrect sta	atement among the following is	i		[IIT 1997]
	[1] The first ionis	satioin potential of AI is less that	an the first ionisation	on potential of Mg	
	[2] The second i	onisation potential of Mg is gre	ater than the seco	nd ionisation potentia	al of Na
	[3] The first ionis	sation potential of Na is less the	an the first ionisati	on potential of Mg	
	[4] The third ioni	sation potential of Mg is greate	er than the third ior	nisation potential of A	I

Q.20	Which of the properties	s remains unchanged on	ged on descending a group in the periodic table [MP PET 1997]						
	[1] Atomic size	[2] Density	[3] Valence electrons	[4] Metallic c	haracter				
Q.21	Which is smallest in size	ze			[RPMT 1997]				
	[1] O ²⁻	[2] C ⁴⁻	[3] F [_]	[4] N ^{3–}					
Q.22	The elements indicating	g following atomic numbe	rs belong to same group		[RPMT 1997]				
	[1] 11 and 37	[2] 19 and 15	[3] 39 and 88	[4] None of t	hese				
Q.23	Dobereiner triads is				[RPMT 1997]				
	[1] Na , K , Rb	[2] Mg, S, As	[3] Cl, Br, I	[4] P, S, As					
Q.24	Which shows variable v	valency			_				
	[1] s-block elements	[2] p-block elements	[3] d-block elements	[4] Radioacti	ve elements				
Q.25	Which of the following g	gaseous atoms has highe	st value of IE -	[JIPMI	ER 97,CPMT 1997]				
	[1] P	[2] Si	[3] Mg	[4] Al					
Q.26	Fluorine has low electro	on affinity than chlorine be	ecause of		[CPMT 1997]				
	[1] Smaller radius of flu	orine, high density	[2] Smaller radius of ch	lorine, high de	nsity				
	[3] Bigger radius of fluo	orine, less density	[4] Smaller radius of ch	nsity					
Q.27	Strongest reducing age	ent is			[RPMT 1997]				
	[1] Cl ₂	[2] CI-	[3] Br	[4] I⁻					
Q.28	Arrange the following ir	n increasing order of their	atomic radius : Na, K, Mg	g, Rb	[AFMC 95, 1997]				
	[1] Mg < K < Na < Rb	C	[2] Mg < Na < K < Rb						
	[3] Mg < Na < Rb < K		[4] Na < K < Rb < Mg						
Q.29	Which of the following e	elements are analogous to	o the lanthanides		[AIIMS 1998]				
	[1] Actinides	[2] Borides	[3] Carbides	[4] Hydrides					
Q.30	As per the modern perio	odic law, the physical and	chemical properties of ele	ements are per	riodic functions of their				
					[C.B.S.E. 1998]				
	[1] Atomic volume	•	[2] Electronic configurat	ion					
	[3] Atomic weight		[4] Atomic size						
Q.31	The first ionization pote	entials (eV) of Be and B re	spectively are		[C.B.S.E. 1998]				
	[1] 8.29 eV, 9.32 eV	[2] 9.32 eV, 9.32 eV	[3] 8.29 eV, 8.29 eV	[4] 9.32 eV, 8	8.29 eV				
Q.32	In the following , the ele	ement with the highest ele	ectropositivity is	[N	IP PET/PMT 1998]				
	[1] Copper	[2] Caesium	[3] Barium	[4] Chromium					
Q.33	Elements with outer ele	ectron configuration ns ² np	⁶ are	[N	IP PET/PMT 1998]				
	[1] Alkaline earth metal	ls	[2] Transition elements						
	[3] Chalcogens		[4] Noble gases						
Q.34	In the periodic table, the	e element with atomic nu	mber 16 will be placed in	the group [N	IP PET/PMT 1998]				
	[1] Third	[2] Fourth	[3] Fifth	[4] Sixth					

Q.35	A sudden large jump to associated with the electron	petween the values of se ctronic configuration	cond and third ionisation	n energies of ar [CBSE 19]	n element would be 992, AFMC 1998]				
	[1] 1s ² , 2s ² p ⁶ , 3s ¹	[2] 1s ² , 2s ² p ⁶ , 3s ² p ¹	[3] 1s², 2s²p ⁶ , 3s²p²	[4] 1s ² , 2s ² p ⁶ ,	, 3s ²				
Q.36	Which of the following s	statement is true about the	e elements of IA and IIA g	group elements					
	[1] The I.P. of alkali met	als are higher than that o	f alkaline earth metal		[RPMT 1998]				
	[2] The size of alkali me	etals are larger than that c	of alkaline earth metals						
	[3] The reactivity of alka	aline earth metals is more	than that of alkali metals	6					
	[4] All the above								
Q.37	Which pair show less s	imilarity in their properties	s than the other three		[RPMT 1998]				
	[1] Li–Mg	[2] Be–Al	[3] Na–Ca	[4] B–Si	\sim				
Q.38	Number of s-block elem	nent are			[RPMT 1998]				
	[1] More than that of p-l	block elements	[2] Equal to that of p-blo	ock elements					
	[3] More than that of d-l	block elements	[4] None of the above						
Q.39	Which of the following is	s most electronegative)	[CPMT 1998]				
	[1] Carbon	[2] Silicon	[3] Lead	[4] Tin					
Q.40	Ionic radii of				[MP PMT 1999]				
	[1] Ti ⁴⁺ < Mn ⁷⁺	[2] ³⁵ Cl ⁻ < ³⁷ Cl ⁻	[3] K⁺ > CI⁻	[4] $P^{3+} > P^{5+}$					
Q.41	In the modern periodic	table, the place of the ele	ment with atomic number	r 31 is in	[MP PMT 1999]				
	[1] s-block	[2] d-block	[3] p-block	[4] f–block					
Q.42	Which one of the follow	ring is an s-block element		[MP PMT 1999]					
	[1] Aluminium	[2] Chromium	[3] Niobium	[4] Potassium					
Q.43	Which of the following r	metals exhibits more than	one oxidation state		[MP PET 1999]				
	[1] Na	[2] Mg	[3] Fe	[4] AI					
Q.44	Which has the smalles	t size			[MP PET 1999]				
	[1] Na⁺	[2] Mg ²⁺	[3] Al ³⁺	[4] P ⁵⁺					
Q.45	The word alkali is used	for alkali metals indicates	8		[RPMT 1999]				
	[1] Ash of the plants	[2] Metallic nature	[3] Silvery lustre	[4] Active meta	al				
Q.46	Maximum covalent cha	racter is associated with t	he compound		[RPMT 1999]				
	[1] Nal	[2] MgI ₂	[3] AICI ₃	[4] AlI ₃					
Q.47	Arrange F, CI, O, N in th	e decreasing order of ele	ctronegativity		[PET 2000]				
	[1] O > F > N > Cl	[2] F > N > Cl > O	[3] Cl > F > N > O	[4] F > O > N ≈	≈ CI				
Q.48	Which of the following r	netal does not show varia	ble oxidation state		[PET 2000]				
	[1] Zn	[2] Fe	[3] Cu	[4] Cr					
Q.49	In which of the following	g process highest energy i	is absorbed		[PET 2000]				
	$[1] \operatorname{Cu} \to \operatorname{Cu}^{\scriptscriptstyle +}$	[2] $Br \rightarrow Br^-$	[3] I → I ⁻	[4] Li \rightarrow Li ⁺					

PERIODIC-TABLE

				[PERIODIC-TABLE				
Q.50	The bond angle in	PH ₃ is			[RPMT 2000]				
	[1] Much less than	NH ₃	[2] Equal to that of N	IH ₃					
	[3] Much greater th	an NH_3	[4] Slightly greater th	$an NH_3$					
Q.51	Hydrogen can be p	ut in halogen group becaus	е	[RPMT 2000]					
	[1] It has deuterium	n and tritium as isotopes	[2] It forms hydrides	like chlorides					
	[3] It contains one	electron only	[4] It is light						
Q.52	Correct order of 1s	t IP among following eleme	nts Be, B, C, N,O is		[CPMT 2001]				
	[1] B < Be < C < C) < N	[2] B < Be < C < N <	< 0					
	[3] Be < B < C < N	< 0	[4] Be < B < C < O <	< N					
Q.53	Diagonal relationsh	nip is shown by			[RPET 2001]				
	[1] Ca, Ba	[2] Be, Mg	[3] Na, K	[4] Li, Mg					
Q.54	Correct sequence	of bond length is		\mathbf{G}	[RPET 2001]				
	$[1] HC \equiv CH > H_2C$	$= CH_2 > H_3C - CH_3$	$[2] H_2C = CH_2 > HC$	$[2] H_2C = CH_2 > HC \equiv CH > H_3C - CH_3$					
0.55	$[3] H_3 C - CH_3 > H_2$	$C = CH_2 > HC \equiv CH$	$[4] H_{3}C - CH_{3} > HC \equiv$	$CH > H_2C = CH_2$					
Q.55	Outer electronic co	for an element is							
0.50	[1] A metal	[2] A nonmetal	[3] Element of 10 ^{er} gr	oup [4] Liquid at 2	981°C				
Q.56	Electron affinity of o	oxygen, sulphur and seleniu	im follows the order						
	[1] O > S > Se	[2] S > O > Se	[3] Se > O > S	[4] Se > S > 0	5				
Q.57	Element 'X' having	electronic configuration 1s ²	² 2s ² 2p ⁶ 3s ² 3p ³ forms co	mpound with Ca. 1	The compound is				
					[RPMT 2001]				
	[1] Ca ₂ X ₃	[2] Ca ₃ X	[3] Ca ₃ X ₂	[4] CaX					
Q.58	Triad of transuranio	c element is			[RPMT 2001]				
	[1] Th, NP , Pu	[2] Bk, Cf, Fm	[3] Tm, Nd , Pm	[4] Pa, Fm, N	ld				
Q.59	Most covalent halic	de of aluminium is			[RPMT 2001]				
	[1] AlI ₃	[2] AlBr ₃	[3] AICI ₃	[4] AIF ₃					
Q.60	Which of the follow	ing order is wrong			[CBSE 2002]				
	[1] NH ₃ < PH ₃ < As	H ₃	– Acidic						
	[2] Li < Be < B < C	;							
	$[3] Al_2O_3 < MgO <$	$Na_2O < K_2O$	– Basic						
	[4] Li ⁺ < Na ⁺ < K ⁺ <	< Cs⁺	– Ionic radius						
Q.61	General electronic	configuration of lanthanides	sis		[CBSE 2002]				
	[1] (n–2) f ^{1–14} , (n–1) s² p ⁶ d ^{0–1} , ns²	[2] (n–2) f ^{10–14} , (n–1)	d ^{10–1} , ns ²					
	[3] (n–2) f ^{0–14} , (n–1) d ¹⁰ , ns ²	[4] (n–2) d ^{0–1} , (n–1) f	[4] (n–2) d ^{0–1} , (n–1) f ^{1–14} , ns ²					
Q.62	Which of the follow	ing orders is correct for the	first ionisation potential	of B, C and N	[MP-PMT 2002]				
	[1] B > C > N	[2] N > C > B	[3] N > C < B	[4] N < C < B					

					PERIODIC-TABLE
Q.63	Chloride ion and potas	ssium ion are isoelectroni	c, then		[KCET 2002]
	[1] Their sizes are san	ne	[2] Cl⁻ ion is bigger tha	ın K⁺ ion	
	[3] K ⁺ ion is relatively b	bigger	[4] Their sizes depend	on their cation	and anion
Q.64	Which of the following	does not have valence el	ectron in 3d-subshell		[AIIMS 2002]
	[1] Fe (III)	[2] Cr (I)	[3] Mn (II)	[4] P (O)	
Q.65	Which of the following	elements is most metalli	с		[MP-PMT 2002]
	[1] P	[2] As	[3] Sb	[4] Bi	
Q.66	What is the general ele	ectronic configuration for	second row transition ser	ies	[Orissa JEE 2002]
	[1] [Ne] 3d ¹⁻¹⁰ , 4s ²	[2] [Ar] 3d ¹⁻¹⁰ , 4s ¹⁻²	[3] [Kr] 4d ¹⁻¹⁰ , 5s ¹⁻²	[4] [Xe] 5d1-	¹⁰ , 5s ^{1–2}
Q.67	The ions O^{2-} , F^- , Na^+	, Mg ²⁺ and Al ³⁺ are isoele	ectronic. Their ionic radii s	show	[CBSE,PMT 2003]
	[1] A significant decre	ase from O ^{2–} to Al ³⁺		0	
	[2] An increase from C	6			
	[3] A decrease from O	\mathbf{A}			
	[4] A significant increa	ase from O ^{2–} to Al ³⁺		5	
Q.68	According to the Peric	odic Law of elements, the	variation in properties of e	elements is rel	ated to their
	[1] nuclear neutron-pro	oton number ratios	[2] atomic masses		[AIEEE 2003]
	[3] nuclear masses		[4] Atomic numbers		
Q.69	The atomic numbers o and 26. Which one of t	f vanadium (V), Chromiun hese may be expected to	n (Cr), Manganese (Mn) an have the highest second i	nd iron (Fe) are onization enth	e respectively 23, 24,25 alpy [AIEEE 2003]
	[1] Fe	[2] V	[3] Cr	[4] Mn	
Q.70	Which one of the follow	wing groupings represent	s a collection of isoelectro	onic species	[AIEEE 2003]
	[1] Ca²+ , Cs+ , Br	[2] Na+ , Ca²+ , Mg²+	[3] N³- , F⁻ , Na⁺	[4] Be, Al ³⁺	, CI-
Q.71	Which one of the follow	wing ions has the highest	value of ionic radius		[AIEEE 2004]
	[1] F-	[2] B ³⁺	[3] O ²⁻	[4] Li+	
Q.72	Among AI_2O_3 , SiO_2 , P_2	${}_{2}O_{3}$ and SO ₂ the correct o	rder of acid strength is		[AIEEE 2004]
	$[1] Al_2O_3 < SiO_2 < P_2O_3$	0 ₃ < SO ₂	$[2] SiO_2 < SO_2 < AI_2O_3$	< P ₂ O ₃	
	$[3] Al_2O_3 < SiO_2 < SO_2$	$_{2} < P_{2}O_{3}$	[4] $SO_2 < P_2O_3 < SiO_2$	< Al ₂ O ₃	
Q.73	The Correct sequence	of increasing covalent ch	aracter is represented by		[CBSE PMT 2005]
	[1] LiCl < NaCl K BeC	l ₂	[2] BeCl ₂ < NaCl < LiC		
	[3] NaCl < LiCl < BeC	l_2	[4] BeCl ₂ < LiCl < NaC	I	
Q.74	Ionisation energy in gr	oup I-A varies in the decr	eaing order as -		[Orissa JEE 2005]
	[1] Li > Na > K > Cs	[2] Na > Li > K > Cs	[3] Li > Cs > K > Na	[4] K > Cs >	> Na > Li
Q.75	Order of first ionization	n potentials of elements L	.i, Be, B, Na is -		[Kerala CET 2005]
	[1] Li > Be > B > Na	[2] Be > B > Li > Na	[3] Na > Li > B > Be	[4] Be > Li :	> B > Na

					PERIODIC-TABLE								
Q.76	Ionic compounds are	formed most easily with			[DPMT 2005]								
	[1] Low electron affin	ity, high ionisation energy	[2] High electron affinit	y, low ionisatior	nenergy								
	[3] Low electron affin	ity, low ionisation energy	[4] High electron affinity, high ionisation energy										
Q.77	Which one of the follo sign) of the given ato	owing arrangements repres mic species.	sents the correct order of	electron gain e	nthalpy (with negative [CBSE PMT 2005]								
	[1] Cl < F < S < O	[2] O < S < F < Cl	[3] S < O < Cl < F	[4] F < Cl <	0 < S								
Q.78	The pair of amphoter	ic hydroxides is -			[AIIMS 2005]								
	[1] AI(OH) ₃ , LiOH	$[2] \operatorname{Be(OH)}_2, \operatorname{Mg(OH)}_2$	$[3] \operatorname{B(OH)}_3, \operatorname{Be(OH)}_2$	[4] Be(OH) ₂ ,	Zn(OH) ₂								
Q.79	Which of the followin	g oxides is amphoteric in c	haracter		[AIEEE 2005]								
	[1] CaO	[2] CO ₂	[3] SiO ₂	[4] SnO ₂	\sim								
Q.80	In which of the follow	property indica	ited against it										
	[1] $AI^{3+} < Mg^{2+} < Na^+ < F^-$; Increasing ionic size												
	[2] B < C < N < O ; Ir	creasing first ionization en	ithalpy	S									
	[3] I < Br < F < Cl ; In	creasing electron gain entl	nalpy (with negative sign)									
	[4] Li < Na < K < Rb	Increasing metallic radius											
Q.81	Lanthanoid contraction	on is caused due to -	^C		[AIEEE 2006]								
	[1] The appreciable s	hielding on outer electrons	by 5d electrons from the	nuclear charge	9								
	[2] The same effectiv	e nuclear charge from Ce to	oLu										
	[3] The imperfect shie	elding on outer electrons by	4f electrons from the nu	clear charge									
	[4] The appreciable s	hielding on outer electrons	by 4f electrons from the	nuclear charge									
Q.82	The increasing order	of the first ionization entha	alpies of the elements B,	P, S and F (low	est first) is								
		C.S.O			[AIEEE 2006]								
	[1] P < S < B < F	[2] B < P < S < F	[3] B < S < P < F	[4] F < S < F	P < B								
Q.83	The stability of dihali	des of Si, Ge, Sn and Pb ir	creases steadily in the s	equence	[AIEEE 2007]								
	[1] SiX ₂ << GeX ₂ < <s< td=""><td>$nX_2 \ll PbX_2$</td><td>$[2] PbX_2 << SnX_2 << Go$</td><td>$eX_2 \ll SiX_2$</td><td></td></s<>	$nX_2 \ll PbX_2$	$[2] PbX_2 << SnX_2 << Go$	$eX_2 \ll SiX_2$									
	[3] GeX ₂ << SiX ₂ < <s< td=""><td>nX₂ << PbX₂</td><td>[4] SiX₂ << GeX₂ << Pb</td><td>$X_2 << SnX_2$</td><td></td></s<>	nX ₂ << PbX ₂	[4] SiX ₂ << GeX ₂ << Pb	$X_2 << SnX_2$									

Answer Key - 3

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	2	4	2	1	4	2	1	3	2	2	3	2	2	4	1	1	3	2	3
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	1	3	3	1	1	4	2	1	2	4	2	4	4	4	2	3	4	1	4
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	4	3	4	1	4	4	1	4	1	2	1	4	3	1	2	3	2	1	2
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	1	2	2	4	4	3	2	4	1	3	3	1	3	1	2	2	2	4	3	2
Que.	81	82	83																	
Ans.	3	3	1																	