

Q.1	The metallic luster of sodiur	n can be explained –				
	[1] By diffusion of sodium io	n	[2] By oscillation of loose electrons			
	[3] By excitation of free prot	ons	[4] By body centred cubic	lattice		
Q.2	The structure of alkali metal	s is generally				
	[1] hcp	[2] fcc	[3] bcc	[4] None of these		
Q.3	Ignite mixture in thermite pr	ocess is				
	[1] Fe + Al powder		[2] BaO ₂ + Mg powder			
	[3] Cr + AI powder		[4] Fe ₂ O ₃ + Mg powder			
Q.4	Froth flotation process is us	ed in the concentration c	f following type of ore –			
	[1] Carbonate ore	[2] Oxide ore	[3] Sulphide ore	[4] Phosphate ore		
Q.5	The purpose of smelting of a	an ore is				
	[1] to oxidise it		[2] to reduce it	\mathbf{O}		
	[3] To remove volatile impuri	ities from it	[4] to obtain an alloy			
Q.6	If steel is heated to redness	and is suddenly quench	ed by plunging into water o	r oil, it becomes -		
	[1] Hard and ductile	[2] Soft and ductile	[3] Soft and brittle	[4] Hard and brittle		
Q.7	Steel is heated to redness a	and then allowed to cool	slowly. This process is calle	ed		
	[1] Hardening	[2] Temperine	[3] Annealing	[4] Brittleness		
Q.8	Gun metal is an alloy of -					
	[1] Cr and Al	[2] Cu, Sn and Zn	[3] Cu, Zn and Ni	[4] Cu and Sn		
Q.9	Bauxite is purified by		0			
	[1] Hall's method	[2] Baeyer's method	[3] Both of the above	[4] None of these		
Q.10	If the impurity of silica in bar	uxite is comparatively mo	ore, then it is purified by			
	[1] Hall's method	[2] Baeyer's method	[3]Serpek's process	[4] Pattinson's process		
Q.11	Metallic bond is	0				
	[1] An ionic bond	0	[2] A covalent bond			
	[3] inter atomic forces betwe	een metal atoms	[4] None of these			
Q.12	Mercury is purified -					
	[1] By converting into solid	state	[2] By vacuum distillation			
0.40	[3] By the reaction with dif F	INO ₃	[4] By electrolysis			
Q.13	The silver obtained from arg	entiferrous lead, is purifie	ed by			
	[1] Distillation		[2] Froth flotation method			
0.44			[4] Reaction with KCN			
Q.14	In alumino thermite process	s, aluminium acts as-	[O] A madu at ant			
0.45	[1] An oxidant		[3] A reductant	[4] A solder		
Q.15	In the production of silver m	etal from argentite. ore -				
	[1] A mixture of fused Ag_2 S [2] Ag S is reduced by CO	and KCI is electrolysed	•			
	$[2] Ag_2 S is reduced by CO$	and than A.g. O is radue	ad with carbon			
	[3] Ag ₂ S is to asted to Ag ₂ O	N colution and then met	ed with Carbon			
0.16	The inner lining of a blast fu	rnace is made of -	αι ιο τεριασεά Dy ΖΠ			
36.10	[1] Granhite bricks		[2] Silica bricks			
	[3] Fire clay bricks		[4] Alkaline bricks			
			[.],			

Q.17	Which of the following ores	s is concentrated .by froth	flotation method -	
	[1] Bauxite ore	[2] Haematite ore	[3] Cryolite ore	[4] Sulphide ore
Q.18	Most abundant element in	earth's crust is		
	[1] Hydrogen	[2] Oxygen	[3] Silicon	[4] Carbon
Q.19	Iron reacts with carbon to g	ive		
	[1] FeC	[2] Fe ₃ C	[3] FeC ₂	[4] FeC ₃
Q.20	The most stable oxidation	state of iron is	-	Ū
	[1] + 2	[2] + 3	[3] - 2	[4] - 3
Q.21	The following process is ne	cessary to obtain purest f	form of copper metal	
	[1] Carbon reduction	[2] Hydrogen reduction	[3] Electrolytic process	[4] Thermite process
Q.22	The following metal can be	extracted by Bayer's met	hod	
	[1] Mg	[2] Fe	[3] Cu	[4] AI
Q.23	The substance mixed for th	e removal of . impurities f	from ores is called	
	[1] Slag	[2] Ganque	[3] Flux	[4] Catalvst
Q.24	Which of the following in a	correct statement?		
-	[1] Malachite is an ore of co	opper	[2] Azurite is an ore of co	oper
	[3] Both of the above	,	[4] None of these	
Q.25	Which of the following is no	ot a correct statement?		
4.20	[1] Malachite is a carbonate	e ore	[2] Azurite is carbonate o	re
	[3] Both ores are of conner		[4] Malachite and azurite	hoth are oxide ores
0.26	Formula of bauxite is			
Q.20			[3] ALO, 2H.O	[4] ALO, 3H.O
0 27	Mercury does not form amagination $M_{2} \sim 3$	$[2]$ $A_2O_3.1_2O$	[0]/11203.21120	
Q.21		[2] Zn	[3] Ni	[4] Fo
Q 28	Which of the following is an	ore of iron?		
Q.20	[1] Haematite	[2] Kieserite	[3] Malachite	[4] None of these
Q.29	The purest form of iron is			
	[1] White cast iron	[2] Grey cast iron	[3] Wrought iron	[4] Steel
Q.30	Which of the following is no	ot a property of metals?		
	[1] Metals are transparent		[2] Metals can be beaten	to sheets
	[3] Metals have crystalline	structure	[4] Metals are good cond	uctors of heat.
Q.31	Smelting is a process in whether the second	nich		
	[1] Ore is heated in present	ce of air	[2] Ore is cooled	
	[3] Ore is heated in absence	e of air	[4] Ore is melted	
Q.32	In the electrorefining of met	al its aqueous salt solution	n is electrolysed. Impure me	etal is taken as anode and pure
	metal as cathode. This met	121 Coppor	etining of -	[4] Zino
0 33	[1] Silver Sulphide ore is generally or	[2] Copper	[3] Aluminium	[4] ZINC
Q.00	[1] Froth flotation method	[2] Magnetic separation	[3] Gravity separation	[4] by caching with hand
Q.34	For the purification of baux	ite by Hall's method it is		
QIO-	[1] Heated with NaOH	[2] Fused with Na ₂ CO ₂	[3] Both of the above	[4] None of the above
Q.35	The substance which forms	s fusible matter by reactin	g with gangue, is called	[.]
	[1] Flux	[2] Catalyst	[3] Ore	[4] Glassy slag
Q.36	Zinc plating is			
	[1] Deposition of Zn over Fe)	[2] Deposition of Al over F	e
	[3] Deposition of Sn over Fe	e	[4] Deposition of Cu over	Fe

Q.37	The formula for felspar is			
	[1] KAISi ₃ O ₈	[2] Al ₂ O ₃	[3] Na ₃ AIF ₆	[4] AI ₂ O ₃ .2SiO ₂ .2H ₂ O
Q.38	For obtaining silver from he	orn silver, it is-		
	[1] Boiled with caustic sod	a and glucose	[2] reacted with Zn + H_2 S	SO ₄
	[3] Both of the above		[4] None of these	
Q.39	The purest form of comme	rcial iron is		
	[1] Pig iron	[2] Cast iron	[3] Wrought iron	[4] steel
Q.40	The product formed when	AgCI is fused with Na ₂ CC	D ₃ is	
	[1] Ag ₂ CO ₃	[2] Silver carbide	[3] Ag	[4] Ag ₂ O
Q.41	In blast furnace, iron oxide	is reduced with		
	[1] silica	[2] by CO	[3] By carbon	[4] by lime stone
Q.42	The natural substance from	m which metal is extracte	d economically is called	
	[1] Mineral	[2] Ore	[3] Compound	[4] Salt
Q.43	Which of the following is a	true statement?		\mathbf{O}
	[1] Metallic bond is direction	onal	(
	[2] Metallic bond is localise	ed between, two atoms		
	[3] Metallic bond is similar	to ionic bond.		•
	[4] Metallic bond can expla	ain the properties of meta	als like malleability and duc	tility.
Q.44	Which has the highest per	centage of carbon?		
	[1] Wrought iron	[2] Soft steel	[3] Mild steel	[4] Hard steel
Q.45	Iron becomes inactive if it	is treated with		
	[1] Conc. H ₂ SO ₄	[2] Cone. HCI	[3] Conc. H ₃ PO ₄	[4] Conc. HNO ₃
Q.46	Bronze is an alloy of	C		
	[1] Cu and Mn	[2] Cu and Zn	[3] Cu and Sn	[4] Cu and Al
Q.47	Which of the following is n	ot an ore of silver?		
	[1] Ruby silver	[2] Horn silver	[3] German silver	[4] Argentite
Q.48	White vitriol is			
	[1] CuSO ₄ . 5H ₂ O	[2] ZnSO ₄ .7H ₂ O	[3] FeSO ₄ . 7H ₂ O	[4] CoSO ₄ .7H ₂ O
Q.49	The thin layer of which of the	ne following is deposited	in galvanised iron	
	[1] Tin	[2] Zinc	[3] Aluminium	[4] White lead,
Q.50	German silver is			
	[1] AgCl		[2] Alloy of Cu, Zn and N	i
	[3] Alloy of Cu, Zn and Sn		[4] None of these	
Q.51	Which of the following ore:	s can be concentrated by	magnetic separation metho	od?
	[1] Galena	[2] Haematite	[3] Argentite	[4] Sedarite
Q.52	The purest form of iron is			
	[1] Pig iron	[2] Wrought iron	[3] Cast iron	[4] Soft ispat
Q.53	Lime stone ore on heating	gives carbon dioxide. Th	is process in metallurgy is o	called
	[1] Smelting	[2] Ore dressing	[3] Calcination	[4] Roasting
Q.54	In calcination			
	[1] Ore is oxidised in the p	resence of air.		
	[2] Ore is heated in the ab	sence of air below its me	lting point	
	[3] Ore is reduced with car	bon		
	[4] None of these			

[1] To make alumina soluble [2] To decrease the electrical conductivity and increase the melting point [3] To increase the electrical conductivity and decrease -the melting. point [4] None of these Q.56 Which of the following is useful for obtaining silver metal? [1] Parkes process [2] Froth flotation method [3] Carbon reduction [4] Magnetic separation Q.57 Which of the following is not an alkaline flux? [1] CaCO ₃ [2] Lime [3] SiO ₂ [4] CaO Q.58 In the extraction of which of the following a complex is formed? [1] Na [2] Cu [3] Ag [4] Fe Q.59 Those substances which form fusible matter by reacting with matrix are called [1] Flux [2] Catalysts [3] Ores [4] slags Q.60 Heating pyrites in air to remove sulphur is known as [1] Roasting [2] Catalysts [3] Ores [4] formation of slag Q.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO ₂ [2] SO ₃ [3] H ₂ [4] Cu ⁺ ions Q.62 Argentite is an ore of [1] Cu [2] Ag [3] Pt [4] Au Q.63 The percentage of nickel in nickel ion is [1] 1.5% [2] J.5% [3] 6.5% [4] 8.5% Q.64 Glauber's salt is [1] MgSO ₄ .7H ₂ O [2] CuSO ₄ .5H ₂ O [3] FeSO ₄ .7H ₂ O [4] Na ₂ SO ₄ .10H ₂ O Q.65 Which of the following is a correct statement? [1] Baxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [3] Magnetite is an ore of aluminium [3] Magnetite is an ore of copper [3] Magnetite is an ore of aluminium [3] Magnetite is an ore of copper [4] Argentite is an
[2] To decrease the electrical conductivity and increase the melting point [3] To increase the electrical conductivity and decrease -the melting. point [4] None of these Q.56 Which of the following is useful for obtaining silver metal? [1] Parkes process [2] Froth flotation method [3] Carbon reduction [4] Magnetic separation Q.57 Which of the following is not an alkaline flux? [1] CaCO ₃ [2] Lime [3] SiO ₂ [4] CaO Q.58 In the extraction of which of the following a complex is formed? [1] Na [2] Catalysts [3] Ores [4] Slags Q.59 Those substances which form fusible matter by reacting with matrix are called [4] Islags [4] Islags Q.60 Heating pyrites in air to remove sulphur is known as [4] formation of slag [4] formation of slag Q.61 Which of the following is formed by the reaction of cooper with concentrated and hot sulphuric acid-(1] SO ₂ [2] SO ₃ [3] Pt [4] Au G.62 Argentite is an ore of [1] Cu [2] Ag [3] Pt [4] Na ₂ SO ₄ . 10H ₂ O G.63 The percentage of nickel ir nicke
[3] To increase the electrical conductivity and decrease -the melting. point [4] None of these Q.56 Which of the following is useful for obtaining silver metal? [1] Parkes process [2] Froth flotation method [3] Carbon reduction [4] Magnetic separation Q.57 Which of the following is net alkaline flux? [1] CaCO ₃ [2] Lime [3] SiO ₂ [4] CaO Q.58 In the extraction of which of the following a complex is formed? [1] Na [2] Catalysts [3] Ores [4] slags Q.59 Those substances which form fusible matter by reacting with matrix are called [1] Flux [2] Catalysts [3] Ores [4] slags Q.60 Heating pyrites in air to remove sulphur is known as [1] Roasting [2] Calcination [3] Metaing [4] formation of slag Q.61 Which of the following is formed by the reaction of copper with concentrated and hos sulphuric acid- [1] Roasting [4] formation of slag Q.62 Argentite is an ore of [1] SO ₂ [2] Ag [3] Pt [4] Au Q.63 The percentage of nickel in nickel iron is [1] L5% [2] Ag [3] Ses [4] Ass% Q.64 Glauber's salt is [2] CuSO ₄ .5H ₂
[4] None of theseQ.56Which of the following is useful for obtaining silver metal?[1] Parkes process[2] Froth flotation method[3] Carbon reduction[4] Magnetic separation[3] Carbon reduction[4] Magnetic separation[1] CaCO ₃ [2] Lime[3] SiO ₂ [4] CaO 0.57 Which of the following a complex is formed?[1] Na[2] Cu[3] Ag[4] Fe 0.59 Those substances which form fusible matter by reacting with matrix are called[1] Flux[2] Catalysts[3] Ores[4] slags 0.60 Heating pyrites in air to remore sulphur is known as[1] Roasting[2] Calcination[3] SD ₂ [4] formation of slag 0.61 Which of the following is formed by the reaction of coper with concentrated and hot sulphuric acid- [1] SO ₂ [1] Cu[2] Ag[3] Pt[4] Cu+ ions 0.62 Argentite is an ore of [1] 1.5%[1] 1.5%[2] aSS[1] MagSO ₄ , 7H ₂ O[2] CuSO ₄ , 5H ₂ O[3] FeSO ₄ , 7H ₂ O[4] Na ₂ SO ₄ , 10H ₂ O 0.64 Glauber's salt is[1] Magnetite is an ore of coper[2] Haematite is an ore of aluminium[3] Magnetite is an ore of iro[4] Argentite is an ore of aluminium[3] Magnetite is an ore of iro[4] Argentite is an ore of aluminium[3] Magnetite is an ore of iro[4] Argentite is an ore of aluminium[3] Magnetite is an ore of iro[4] Argentite is an ore of aluminium[3] Magnetite is an ore of iro[4] Argentite is an
0.56 Which of the following is useful for obtaining silver metal?[1] Parkes process[2] Froth flotation method[3] Carbon reduction[4] Magnetic separation 0.57 Which of the following is not an alkaline flux?[1] CaCO ₃ [2] Lime[3] SiO ₂ [4] CaO 0.58 In the extraction of which of the following a complex is formed?[1] Na[2] Cu[3] Ag[4] Fe 0.59 Those substances which form fusible matter by reacting with matrix are called[1] Flux[2] Catalysts[3] Ores[4] slags 0.60 Heating pyrites in air to remove sulphur is known as [1] Roasting[2] Catalysts[3] Ores[4] formation of slag 0.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO ₂ [2] NG[3] Pt[4] Au 0.62 Argentite is an ore of [1] Cu[2] Ag[3] Pt[4] Au 0.63 The percentage of nickel in nickel iron is [1] 1.5%[2] SO ₄ .5H ₂ O[3] FeSO ₄ .7H ₂ O[4] Na ₂ SO ₄ .10H ₂ O 0.64 Glauber's sati is [1] MgSO ₄ .7H ₂ O[2] CuSO ₄ .5H ₂ O[3] FeSO ₄ .7H ₂ O[4] Na ₂ SO ₄ .10H ₂ O 0.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper[2] Paematite is an ore of aluminium[3] Magnetite is an ore of oron[4] Argentite is an ore of aluminium[3] Magnetite is an ore of oron[4] Argentite is an ore of aluminium[3] Magnetite is an ore of oron[4] Argentite is an ore of aluminium[3] Magnetite is an ore of oron[4] Argentite is
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
[3] Carbon reduction[4] Magnetic separation 0.57 Which of the following is n = n = n = n = n = n = n = n = n = n
 Q.57 Which of the following is not an alkaline flux? [1] CaCO₃ [2] Lime [3] SiO₂ [4] CaO Q.58 In the extraction of which of the following a complex is formed? [1] Na [2] Cu [3] Ag [4] Fe Q.59 Those substances which form fusible matter by reacting with matrix are called [1] Flux [2] Catalysts [3] Ores [4] slags Q.60 Heating pyrites in air to remove sulphur is known as [1] Roasting [2] Calcination [3] Smelting [4] formation of slag Q.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO₂ [2] SO₃ [3] Pt [4] Au Q.62 Argenitie is an ore of [1] 1.5% [2] J.3.5% [3] 6.5% [4] 8.5% Q.63 The percentage of nickel iron is [1] 1.5% [2] SUSO₄.5H₂O [3] FeSO₄.7H₂O [4] Na₂SO₄.10H₂O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then allowed to cool.
[1] CaCO ₃ [2] Lime [3] SiO ₂ [4] CaO Q.58 In the extraction of which of the following a complex is formed? [1] Na [2] Cu [3] Ag [4] Fe Q.59 Those substances which form fusible matter by reacting with matrix are called [1] Flux [2] Catalysts [3] Ores [4] Slags Q.60 Heating pyrites in air to remove sulphur is known as [4] formation of slag [1] Roasting [2] Calcination [3] Smelting [4] formation of slag Q.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO ₂ [2] SO ₃ [3] H ₂ [4] Cu ⁺ ions Q.62 Argentite is an ore of [1] Cu [2] Ag [3] Pt [4] Au Q.63 The percentage of nickel in nickel iron is [1] 1.5% [2] 3.5% [3] 6.5% [4] Na ₂ SO ₄ . 10H ₂ O Q.64 Glauber's salt is [1] MgSO ₄ .7H ₂ O [2] CuSO ₄ .5H ₂ O [3] FeSO ₄ .7H ₂ O [4] Na ₂ SO ₄ . 10H ₂ O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [2] Haematite is an ore of of on [4] Argentite is an ore of
 Q.58 In the extraction of which of the following a complex is formed? [1] Na [2] Cu [3] Ag [4] Fe Q.59 Those substances which form fusible matter by reacting with matrix are called [1] Flux [2] Catalysts [3] Ores [4] slags Q.60 Heating pyrites in air to remove sulphur is known as [1] Roasting [2] Calcination [3] Smelting [4] formation of slag Q.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO2 [2] SO3 [3] H2 [4] Cu⁺ ions Q.62 Argentite is an ore of [1] Cu [2] Ag [3] Pt [4] Au Q.63 The percentage of nickel in nickel iron is [1] 1.5% [2] 3.5% [3] 6.5% [4] 8.5% Q.64 Glauber's salt is [1] MgSQ₄.7H₂O [2] CuSQ₄.5H₂O [3] FeSQ₄.7H₂O [4] Na₂SO₄. 10H₂O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of iron [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
$ \begin{array}{ c c c c } 13 \ Ag & [2] \ Cu & [3] \ Ag & [4] \ Fe \\ \hline \end{tabular} \label{eq:alpha} \label{eq:alpha} \label{eq:alpha} \label{eq:alpha} \label{eq:alpha} \\ \hline \end{tabular} \label{eq:alpha} eq:alp$
 Q.59 Those substances which form fusible matter by reacting with matrix are called [1] Flux [2] Catalysts [3] Ores [4] slags Q.60 Heating pyrites in air to remove sulphur is known as [1] Roasting [2] Calcination [3] Smelting [4] formation of slag Q.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO2 [2] SO3 [3] H2 [4] formation of slag Q.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO2 [2] SO3 [3] H2 [4] Cu⁺ ions Q.62 Argentite is an ore of [1] Cu [2] Ag [3] Pt [4] Au Q.63 The percentage of nickel in nickel iron is [1] 1.5% [2] 3.5% [3] 6.5% [4] 8.5% Q.64 Glauber's salt is [1] MgSO4.7H2O [2] CuSO4.5H2O [3] FeSO4.7H2O [4] Na2SO4. 10H2O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then allowed to cool.
[1] Flux[2] Catalysts[3] Ores[4] slags Q.60 Heating pyrites in air to remove sulphur is known as [1] Roasting[2] Calcination[3] Smelting[4] formation of slag Q.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO2[2] SO3[3] H2[4] Cu ⁺ ions Q.62 Argentite is an ore of [1] Cu[2] Ag[3] Pt[4] Au Q.63 The percentage of nickel in nickel iron is [1] 1.5%[2] 3.5%[3] 6.5%[4] 8.5% Q.64 Glauber's salt is [1] MgSO4.7H2O[2] CuSO4.5H2O[3] FeSO4.7H2O[4] Na2SO4.10H2O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper[2] Haematite is an ore of aluminium[3] Magnetite is an ore of or or point[2] Zinc oxide[3] Mercuric oxide[4] Aluminium oxide Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide[2] Zinc oxide[3] Mercuric oxide[4] Aluminium oxide Q.67 In the nitriding process of ispat [2] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil[4] Aluminium oxide
 Q.60 Heating pyrites in air to remove sulphur is known as [1] Roasting [2] Calcination [3] Smelting [4] formation of slag Q.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO2 [2] SO3 [3] H2 [4] Cu⁺ ions Q.62 Argentite is an ore of [1] Cu [2] Ag [3] Pt [4] Au Q.63 The percentage of nickel in nickel iron is [1] 1.5% [2] 3.5% [3] 6.5% [4] 8.5% Q.64 Glauber's salt is [1] MgSO4.7H2O [2] CuSO4.5H2O [3] FeSO4.7H2O [4] Na2SO4.10H2O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
[1] Roasting[2] Calcination[3] Smelting[4] formation of slagQ.61Which of the following is formation by the reaction of copper with concentrated and hot sulphuric acid- [1] SO2[2] SO3[3] H2[4] Cu+ ionsQ.62Argentite is an ore of [1] Cu[2] Ag[3] Pt[4] AuQ.63The percentage of nickel in nickel iron is [1] 1.5%[2] 3.5%[3] 6.5%[4] 8.5%Q.64Glauber's salt is [1] MgSO4.7H2O[2] CuSO4.5H2O[3] FeSO4.7H2O[4] Na2SO4.10H2OQ.65Which of the following is a correct statement? [1] Bauxite is an ore of copper[2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron[4] Argentite is an ore of aluminiumQ.66The compound which gives surger on normal heating [3] Magnetite is an ore of iron[4] Argentite is an ore of aluminium [3] Magnetite is an ore of iron[4] Argentite is an ore of aluminium oxideQ.66In the nitriding process of ispat[3] Mercuric oxide[4] Aluminium oxideQ.67In the nitriding process of ispat[3] Spat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then allowed to cool.[4] Aluminium oxide
 Q.61 Which of the following is formed by the reaction of copper with concentrated and hot sulphuric acid- [1] SO₂ [2] SO₃ [3] H₂ [4] Cu⁺ ions Q.62 Argentite is an ore of [1] Cu [2] Ag [3] Pt [4] Au Q.63 The percentage of nickel in nickel iron is [1] 1.5% [2] 3.5% [3] 6.5% [4] 8.5% Q.64 Glauber's salt is [1] MgSO₄.7H₂O [2] CuSO₄.5H₂O [3] FeSO₄.7H₂O [4] Na₂SO₄. 10H₂O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of copper [2] Haematite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
[1] SO2[2] SO3[3] H2[4] Cu+ ionsQ.62Argentite is an ore of [1] Cu[2] Ag[3] Pt[4] AuQ.63The percentage of nickel in nickel iron is [1] 1.5%[2] 3.5%[3] 6.5%[4] 8.5%Q.64Glauber's salt is [1] MgSO4.7H2O[2] CuSO4.5H2O[3] FeSO4.7H2O[4] Na2SO4. 10H2OQ.65Which of the following is a correct statement? [1] Bauxite is an ore of copper[2] Haematite is an ore of aluminium[3] Magnetite is an ore of iron[4] Argentite is an ore of aluminiumQ.66The compound which gives oxygen on normal heating is- [1] Ferric oxide[2] Zinc oxide[3] Mercuric oxide[4] Aluminium oxideQ.67In the nitriding process of ispat[2] Zinc oxide[3] Mercuric oxide[4] Aluminium oxideQ.67In the nitriding process of ispat[2] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil[4] Aluminium oxide
 Q.62 Argentite is an ore of [1] Cu [2] Ag [3] Pt [4] Au Q.63 The percentage of nickel in nickel iron is [1] 1.5% [2] 3.5% [3] 6.5% [4] 8.5% Q.64 Glauber's salt is [1] MgSO₄.7H₂O [2] CuSO₄.5H₂O [3] FeSO₄.7H₂O [4] Na₂SO₄. 10H₂O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
[1] Cu[2] Ag[3] Pt[4] AuQ.63The percentage of nickel in nickel iron is [1] 1.5%[2] 3.5%[3] 6.5%[4] 8.5%Q.64Glauber's salt is [1] MgSO ₄ .7H ₂ O[2] CuSO ₄ .5H ₂ O[3] FeSO ₄ .7H ₂ O[4] Na ₂ SO ₄ . 10H ₂ OQ.65Which of the following is a correct statement? [1] Bauxite is an ore of copper[2] Haematite is an ore of aluminium[3] Magnetite is an ore of copper[2] Haematite is an ore of aluminium[3] Magnetite is an ore of iron[4] Argentite is an ore of aluminiumQ.66The compound which gives oxygen on normal heating is- [1] Ferric oxide[2] Zinc oxide[3] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
 Q.63 The percentage of nickel in nickel iron is [1] 1.5% [2] 3.5% [3] 6.5% [4] 8.5% Q.64 Glauber's salt is [1] MgSO₄.7H₂O [2] CuSO₄.5H₂O [3] FeSO₄.7H₂O [4] Na₂SO₄. 10H₂O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
 [1] 1.5% [2] 3.5% [3] 6.5% [4] 8.5% Q.64 Glauber's salt is [1] MgSO₄.7H₂O [2] CuSO₄.5H₂O [3] FeSO₄.7H₂O [4] Na₂SO₄. 10H₂O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
 Q.64 Glauber's salt is [1] MgSO₄.7H₂O [2] CuSO₄.5H₂O [3] FeSO₄.7H₂O [4] Na₂SO₄. 10H₂O Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
 Q.65 Which of the following is a correct statement? [1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
[1] Bauxite is an ore of copper [2] Haematite is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
 [1] Datakte is an ore of ecopper [2] fractitude is an ore of aluminium [3] Magnetite is an ore of iron [4] Argentite is an ore of aluminium Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
 Q.66 The compound which gives oxygen on normal heating is- [1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
[1] Ferric oxide [2] Zinc oxide [3] Mercuric oxide [4] Aluminium oxide Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
 Q.67 In the nitriding process of ispat [1] Ispat is heated in an atmosphere of ammonia [2] Ispat is heated to redness and then allowed to cool. [3] Ispat is heated to redness and then cooled by plunging into oil
[1] Ispat is heated in an atmosphere of ammonia[2] Ispat is heated to redness and then allowed to cool.[3] Ispat is heated to redness and then cooled by plunging into oil
[2] Ispat is heated to redness and then allowed to cool.[3] Ispat is heated to redness and then cooled by plunging into oil
[3] Ispat is heated to redness and then cooled by plunging into oil
[4] None of these
Q.68 The method used for the concentration of an ore is-
[1] Froth flotation method [2] Roasting
[3] Electrolysis [4] Bessemerisation
Q.69 Brass is -
[1] A compound [2] An amalgam [3] an element [4] An alloy
Q.70 The main constituents of steel made in india are -
[1] Mn and Cr [2] Al and Zn [3] V and Co [4] Ni and Mg
Q.71 Aluminothermite process. is used for the extraction of those metals, the oxides of which
[1] Are fusible [2] can not be reduced by carbon easily
[3] Can not be reduced by hydrogen easily [4] Are strongly basic

Q.72	Aluminium is refined by			
	[1] Baeyer's process	[2] Serpek process	[3] Hoope's method	[4] None of these
Q.73	The electrolytic method of r	eduction is employed fo	r the the extraction of meta	ls that -
	[1] Are strongly electronega	tive.	[2] Are strongly electropo	sitive
	[3] Are transition metals		[4] Are non metals	
Q.74	The permanent magnet can	be made from		
	[1] Cast iron	[2] Steel	[3] Wrought iron	[4] All.of the above
Q.75	Smelting is done in -			
	[1] Blast furnace	[2] Muffle furnace	[3] Open hearth furnace	[4] Electric furnace
Q.76	The main function of roastin	ng is		
	[1] Removal of volatile subst	tance	[2] Oxidation	
	[3] Reduction		[4] to make slag	^
Q.77	Which of the following is no	t a correct statement?		
	[1] Flux is used to remove in	npurities from metal		
	[2] The nature of the flux de	pends upon the nature c	of impurities	
	[3] Flux reduces the melting	g point of metal		5
	[4] the coke used in smeltin	g acts asa reducing age	ent and fuel.	•
Q.78	The anode mud obtained in	the extraction of copper	ris	
	[1] Cu + Ag	[2] Cu + Ag + Au	[3] Cu + Au	[4] None of these
Q.79	In the extraction of iron fron	n iron oxide, limestone i	s added because it acts as	
	[1] An oxidising agent	[2] A reducing agent	[3] A flux	[4] A precipitant
Q.80	In the industrial production	of iron, lime stone is add	led. Calcium ions separate	as
	[1] Slag	[2] Gangue	[3] Calcium	[4] CaCO ₃
Q.81	Cupel is made up of		[2] Dana ash	
0 82	[1] Silica Slags are generally	[2] Magnesium	[3] Bone ash	[4] Litharge
Q.02	[1] Silicates and Phosphate	as the second	[2] Metallic oxides	
	[3] Pure fused metal		[4] Rocky stones	
Q.83	Pyrargyrite is	0		
	[1] Silver glance	[2] Horn silver	[3] Ruby. silver	[4] German silver
Q.84	Which of the following meta	Is is unable to replace h	ydrogen from acid?	
	[1] Hg	[2] Zn	[3] AI	[4] Ca
Q.85	In concenlration process of	minerals by froth flotatio	on method, the ore particles	float because -
	[1] They are light		[2] Their surface is hydro	phobic
	[3] They bear electrostatic c	harge	[4] They are insoluble.	
Q.86	Which of the following is no	t a correct match?		
	(1) Microcosmic salt Na(NH	H ₄)HPO ₄ .4H ₂ O	[2] Hydrolith - CaH ₂	
	[3] Chromyl chloride - CrO ₂	Cl ₂	[4] Chili salt petre - KNO	3
Q.87	The formula of Kaolin is			
	[1] KAISi ₃ O ₈		[2] Al ₂ O ₃ .2SiO ₂ .2H ₂ O	
	[3] Al ₂ O ₃ .H ₂ O		[4] Na ₃ AIF ₆	
Q.88	The formula of haematite is			
	[1] Fe ₃ O ₄	[2] Fe ₂ O ₃	[3] FeCO ₃	[4] FeS ₂
Q.89	The correct order of stability	y of metal fluoride, chlori	de and oxide is	
	[1] Fluoride> chloride> oxid	e	[2] Fluoride> oxide> chlo	ride
	[3] Oxide> chloride> fluoride	e	[4] All have same stability	у

Q.90	Bell metal is an alloy of			
	[1] Cu + Sn	[2] Cu + Al	[3] Cu + Ni	[4] Cu + Mn
Q.91	Annealing is			
	[1] The process in which ste	eel is heated to redness a	ind then cooled rapidly	
	[2] The process in which ste	el is heated to redness	and then allowed to cool slo	owly
	[3] The process in which ha	rd steel is heated upto 27	70° C and then allowed to c	ool slowly
_	[4] None of these			
Q.92	Coins of silver contain the ir	npurity of		
	[1] Copper	[2] Tin	[3] Zinc	[4] Chromium
Q.93	When a copper wire is dippe the	ed into a solution of AgNC	θ_3 . The colour of the solution	becomes blue. The reason is
	[1] Formation of a soluble co	omplex	[2] Oxidation of copper	
	[3] Oxidation of silver		[4] Reduction of copper.	
Q.94	Iron can be extracted by the	following process		\mathbf{O}
	[1] Smelting process		[2] Roasting	
	[3] Aluminothermite process	5	[4] Electrolytic reduction o	f fused iron oxide
Q.95	Limonite is an ore of			
	[1] copper	[2] Silver	[3] Aluminium	[4] Iron
Q.96	Powdered silver ore is mixe	d with NaCN solution, the	e product formed on passin	g air to this mixture is -
	[1] AgCN	[2] Ag	[3] Ag(CN) ₂	[4] Na[Ag(CN) ₂]
Q.97	An alloy is an example of			
	[1] Gel	[2] Aerosol	[3] Solid sol	[4] Emulsion
Q.98	Cyanide process is used in	the extraction of		
	[1] Cr	[2] Ag	[3] Cu	[4] Zn
Q.99	The ore of silver is -			
	[1] Argentite	[2] Bauxite	[3] Malachite	[4] Cuprite
Q.100	Duralium is in alloy of			
	[1] Cu and Mg	[2] Cu, Mg and Mn	[3] Cu and Mn	[4] Mg and Mn
	S.			
	N			

Metallurgy

Answer Key - 1

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	2	3	2	3	2	4	3	2	3	3	3	2	3	4	1	3	4	2	2	2	3	4	3	3	4
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	3	3,4	1	3	1	4	3	1	2	1	1	1	3	3	3	2	2	4	4	4	3	3	2	2	2
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	ន	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	2	2	3	2	3	1	3	3	1	1	1	2	2	4	3	3	1	1	4	1	2	3	2	2	1
Qus.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	2	3	2	3	1	3	1	3	1	2	4	2	2	2	1	2	1	2	1	4	4	3	2	1	2

Q.1	The frothing agent in the foll	owing is		
	[1] Pine oil		[2] Sodium amyl xanthate	
	[3] Gangue		[4] Sulphide ore	
Q.2	The number of metallic bon	ds, from Cr to Ni.		
	[1] Decreases continuously		[2] Increases continuously	/
	[3] Remains same		[4] None of these	
Q.3	CuSO ₄ solution on reaction	with KCN gives –		
	[1] Cu(CN) ₂	[2] Cu(CN)	[3] K ₂ [Cu(CN) ₄]	[4] K ₃ [Cu(CN) ₄]
Q.4	In the cyanide method of ex	traction of silver, silver or	e is heated with	
	[1] Sodium cyanide solution	1	[2] Silver cyanide solution	
	[3] Salt and roasted pyrite		[4] None of these	
Q.5	In the Parkes process for th	e extraction of silver, mo	Iten zinc is mixed with molte	en argentiferous lead because
	[1] Molten lead and zinc are	insoluble in each other	(
	[2] Silver is more soluble, in	molten zinc as compare	ed to lead	
	[3] Silver and zinc alloy soli	difies readily on cooling		
	[4] All of the above			
Q.6	The formula of calamine is			
	[1] ZnS	[2] ZnCO ₃	[3] Ag ₂ CO ₃	[4] Ag ₂ S
Q.7	The process of calcination i	s carried out in case of fo	ollowing types of ores	
	[1] Hydroxide ores		[2] Carbonate ores	
	[3] Hydroxide and Carbonat	e ores	[4] Hydroxide and sulphide	eores
Q.8	Which of the following is a c	correct statement?	·	
	[1] A mineral can not be an	ore	[2] All the ores can not be	minerals
	[3] All the ores are minerals		[4] All the minerals are ore	es
Q.9	Which of the following ores	is used in the industrial p	roduction of iron?	
	[1] Cryolite	[2] Bauxite	[3] Hematite	[4] Chalcopyrite
Q.10	Which of the following meta	l contains maximum num	ber of metallic bonds?	
	[1] V	[2] Ti	[3] Sc	[4] Ca
Q.11	The total number of atoms	present in a body central	cubic unit cell is	
	[1] 2	[2] 8	[3] 1	[4] 12
Q.12	Pig iron-			
	[1] Is the iron containing the	carbon and other impuritie	es[2] Is a pure form of iron	
	[3] Is similar to wrought iron		[4] Is similar to steel	
Q.13	Refractory materials are use	ed for the construction of	furnaces because	
	[1] They are light in weight		[2] They can withstand hig	h temperature
	[3] They are leak proof		[4] They do not require to	be replaced
Q.14	The substance used in the	reduction of metal ores ir	thermite process is	
	[1] Aluminium	[2] Thorium	[3] Hot platinum	[4] Carbon
Q.15	The blocks of automobile er	ngines are made up of -		
	[1] Stainless steel	[2] Nickel chromium ste	el[3] Cast iron	[4] Wrought iron
Q.16	Malachite is a mineral of			
	[1] Magnesium	[2] Copper	[3] Iron	[4] Aluminium

Q.17	Ferrous sulphate (FeSO ₄ .7	H ₂ O) is known as -		
	[1] Burmilon	- [2] Glauber's salt	[3] Green vitriol	[4] Mohr's salt
Q.18	Cupellation is used in the e	xtraction of the following	metal-	
	[1] Copper	[2] Silver	[3] Aluminium	[4] Iron
Q.19	Crystalline metal can be tra	insformed into metallic g	lass by	
	[1] Alloying		[2] Pressing into thin plat	es
	[3] Slow cooling of molten r	netal	[4] Very rapid cooling of a	a spray of the molten metal
Q.20	German silver is an alloy of	Cu and		
	[1] Zn and Ni	[2] Al	[3] Zn	[4] Sn
Q.21	Froth flotation process is us	sed in the concentration of	of the following	
	[1] Oxide are	[2] Sulphide ore	[3] ,Chloride are	[4] None of these
Q.22	After the partial roasting of	sulphide ore of copper, th	ne method of reduction is	
	[1] Carbon reduction	[2] Electrolysis	[3] Auto reduction	[4] Cyanide method
Q.23	An alloy is			
	[1] An intermetallic compou	nd	[2] A solid containing two	or more metallic elements
	[3] A solid containing a non	metal	[4] A solid containing mor	e than one non metals
Q.24	An example of halide ore is		Ċ,	
	[1] Galena.	[2] Bauxite	[3] Cryolite	[4] Cinnabar
Q.25	Froth flotation process for t	he concentration of ores	is an example of	
	[1] Adsorption	[2] Absorption	[3] Coagulation	[4] Sedimentation
Q.26	If two compounds have the	same crystal structures a	and analogous formula they	/ are called -
	[1] Isomorphous	[2] Isotopes	[3] Isomers	[4] Isobars
Q.27	Which ore of the following is	s corundum?	0	
	[1] SrO ₂	[2] Al ₂ O ₃	[3] CaCl ₂	[4] Cu ₂ Cl ₂
Q.28	Which of the elements liste	d below occurs in allotro	pic forms?	
	[1] lodine	[2] Copper	[3] Sulphur	[4] silver
Q.29	Which of the following flux i	s used to remove acidic i	impurities in metallurgical p	rocess?
	[1] Silica	[2] Sodium chloride	[3] Lime stone	[4] Radium carbonate
Q.30	The cheap and having high	melting point compound	used in furnace is	
	[1] PbO	[2] CaO	[3] HgO	[4] ZnO
Q.31	Nilam is the mineral of	•		
_	[1] Cu	[2] Zn	[3] Al	[4] Bi
Q.32	Matte is			
	[1] Pure Cu ₂ S		[2] Cu ₂ S with the impurity	/ of FeS
	[3] A mixture of Cu ₂ S + Fe	SiO ₃	[4] 99.8% pure copper	
Q.33	The blistered copper can be	e obtained from matte by	the following process	
	[1] Poling		[2] Smelting	
• • •	[3] Bassemerisation		[4] Roasting	
Q.34	The common alum in the fo	llowing is		
	$[1] K_2 SO_4 AI_2 (SO)_4 24H_2 O$		$[2] K_2 SO_3 Cr_2 (SO_4)_3 24H$	2 ⁰
	[3] K ₂ SO ₄ .Fe ₂ (SO) ₄ 24H ₂ O		$[4] (NH_4)_2 SO_4. FeSO_4.6F$	1 ₂ 0
Q.35	which of the following is the	e best conductor of elect	ricity?	r 41 - 7 '
• • •		[2] Copper	[3] Silver	[4] ∠INC
Q.36	Which of the following elem	ient is found in the body?		
	[1] PD	[∠] ⊢e	[3]. Ca	[4] AI

Metallurgy

Q.37	Which of the following cont	ains only one element? .		
	[1] Marble	[2] Sand	[3] Diamond	[4] Glass
Q.38	White lead is			
	[1] PbCO ₃	[2] PbCO ₃ .PbO	[3] 2PbCO3.Pb(OH)2	[4] PbSO ₄ .PbO
Q.39	Metallurgy is the following	process		
	[1] Concentration of ore		[2] Calcination of ore	
	[3] Extraction of metal from	its ore	[4] Smelting	
Q.40	Froth flotation process is us	sed in the concentration c	of following-	
	[1] Impurities dissolved in w	vater	[2] Surface active organic	compounds
	[3] MgSiO ₃		[4] Sulphide ore	
Q.41	Lead pencil contains			
	[1] Pb	[2] FeS	[3] Graphite	[4] PbS
Q.42	For the protection of iron fro	om rusting its surface is e	lectroplated with the follow	ing metal
	[1] Cu	[2] Zn	[3] Mg.	[4] Pb
Q.43	The chemical formula of rus	st is	(
	[1] FeO	[2] Fe ₃ O ₄	[3] Fe ₂ O ₃ xH ₂ O	[4] FeOxH ₂ O
Q.44	Which of the following 'Prop	perties is not shown by co	opper?	
	[1] High conduction of heat		[2] Low conduction of ele	ctricity
	[3] Tensile strength		[4] Malleability	
Q.45	Which of the following is us	ed in the photography?		
	[1] AgCl	[2] AgBr	[3] Agl	[4] Ag ₂ O
Q.46	When molten copper is coo	bled slowly blistered copp	er is obtained because the	following gas comes out
	[1] Sulphur dioxide	[2] carbon dioxide	[3] Carbon monoxide	[4] Water vapours
Q.47	Spiegeleisen is an alloy of	C		
	[1] Fe, C and Mn	[2] Fe, Cu and Mn	[3] Fe, Ca and Zn	[4] Fe, C and Zn
Q.48	The acidic Bessemer used	in the production of steel	I from cast iron contains, the	e inner lining of
	[1] CaO .	[2] MgO	[3] SiO ₂	[4] Graphite
Q.49	Which of the following is kn	own as Thomas slag?		
	[1] MnSiO ₃	[2] FePO ₄	[3] Ca ₃ (PO ₄) ₂	[4] CaSiO ₃
Q.50	In the Siemens Martin oper	hearth process for the pr	oduction of steel. The follow	ving is used for the oxidation of
			[2] Limonito	[4] CO
0.51	In the formation of wrought	iron from cast iron, the p	[3] LIMONILE	[4] CO
Q.31	furnace with the lining of the	e following material	ercentage of carbon is redu	ced by using the reverberatory
	[1] Magnetite	[2] Silica	[3] Magnesium	[4] Calcium oxide
Q.52	In the Serpek's process for	the purification of bauxite	9	
	[1] Bauxite is fused with Na	1 ₂ CO ₂	[2] Bauxite is heated with	C and N_2
	[3] Bauxite is heated with a	q.: NaOH solution	[4] None of these	Z
Q.53	In the amalgamation metho	od for the extraction of silv	er from silver ore	
	[1] It is heated with sodium	cyanide solution		
		a colt and received purits	s and then agitated with me	ercurv.
	[2] It is grinded with commo	on sait and toasted pyrite	o una mon agitatoa manin	
	[2] It is grinded with common[3] Molten zinc is added to	the ore and the mixture is	s agitated	
	[2] It is grinded with common[3] Molten zinc is added to[4] None of the above	the ore and the mixture is	s agitated	
Q.54	[2] It is grinded with common[3] Molten zinc is added to[4] None of the aboveHigh quantity of heat is pro	the ore and the mixture is duced in the formation of	s agitated Al_2O_3 . This property is use	d

Q.55	Lapis-Lazuli is a blue colou	ed precious stone. It is n	nineral of	
	[1] Sodium aluminosilicate	[2] Zinc cobaltate	[3] Basic copper carbonate	e [4] Prussian blue
Q.56	Plaster of Paris is			
	[1] CaSO ₄	[2] CaSO ₄ .2H ₂ O	[3] 2CaSO ₄ .H ₂ O	[4] CaSO ₄ .H ₂ O
Q.57	Epsom salt is			
	[1] CaSO ₄ .2H ₂ O	[2] FeSO ₄ .7H ₂ O	[3] CuSO ₄ .H ₂ O	[4] MgSO ₄ .7H ₂ O
Q.58	The process of setting of pla	aster of Paris is		
	[1] Oxidation with atmosphe	eric oxygen	[2] Combination with atmo	spheric CO ₂
	[3] Dehydration		[4] formation of another hy	drate by hydration.
Q.59	The extraction Of which of"	the following metals is di	fficult from its oxide?	
	[1] Cs	[2] Ag	[3] Zn	[4] Mg
Q.60	Washing soda is			•
	[1] Na ₂ CO ₃ .10H ₂ O	[2] Na ₂ CO ₃ .H ₂ O	[3] Na ₂ CO ₃ .5H ₂ O	[4] Na ₂ CO ₃
Q.61	Blistere copper is			
	[1] Pure copper	[2] Ore of copper	[3] Alloy of copper	[4] Impure copper
Q.62	The following is used in the	extraction of copper-)
	[1] Cu ₂ S	[2] Pyrite	[3] Silver argento cyanide	[4] CuFeS ₂
Q.63	The salt which is found in le	ast quantity in minerals i	s-	
	[1] Chloride	[2] Sulphate	[3] Sulphide	[4] Nitrate
Q.64	The most common method	or extraction of metals fr	om oxide ores involves	
	[1] Carbon reduction	[2] Aluminium reduction	[3] Hydrogen reduction	[4] Electrolytic reduction
Q.65	Silicon is the main constitue	ent of		
	[1] Alloys	[2] Rocks	[3] Animals	[4] Vegetation
Q.66	Reverberatory furnace is en	nployed in the metallurgic	al process mainly for	
	[1] Reduction of oxide ores	• x O	[2] Smelting of sulphide or	res
	[3] Obtaining magnetic mate	erials	[4] Conversion of chloride	to sulphate
Q.67	Which of the following can o	conduct electricity in soli	d state?	
	[1] diamond	[2] Graphite	[3] lodine	[4] Sodium chloride
Q.68	Which of the following type	of crystals is softest and	has lowest melting point	
	[1] Covalent	[2] Ionic	[3] Metallic	[4] Molecular
Q.69	The closest ABABAB struct	ure is shown by		
	[1] Simple cubic packing		[2] Body centered cubic p	acking
	[3] Face centered cubic pac	king	[4] hexagonal closest pac	king
Q.70	If a crystal contains two ato	ms per unit cell then its	crystal structure is	
	[1] Octahedral		[2] Body centered cubic	
	[3] Face centered cubic		[4] None of these	
Q.71	The unit cell of a crystal latt	ice contains only one at	om, the structure of the latti	ce is
	[1] simple cube	[2] bcc	[3] fcc	[4] None of these
Q.72	The following metal separat	es as volatile oxide in the	e roasting of sulphide ore is	
	[1] As	[2] Zn	[3] Cu	[4] AI
Q.73	The calcination of an ore ma	akes it		
	[1] Hard	[2] Ductile	[3] Porous	[4] None of these
Q.74	The oxides of metals are ge	nerally		
	[1] Acidic	[2] Basic	[3] Amphoteric	[4] Neutral

0.75	The following reaction is in	volved in the Hall's metho	d of purification of bauxite	
4.10	$[1] Al_0 O_2 H_0 O_2 H_2 O_2$	$\rightarrow 2NaAIO_{2} + 3H_{2}O$	$[2] Al_{a}O_{a} 2H_{a}O + Na_{a}OO$	$a \rightarrow 2NaAIO_{a} + 2H_{a}O + CO_{a}$
	$[1] \land [20_{3}21_{2}0] + 200_{1}0$	$\rightarrow 2\text{AIN} + 3\text{CO} + 2\text{H} \text{ O}$	[4] None of these	3 / 2110/1102 / 21120 / 002
0.76	Ag can be precipitated from	2 a solution of sodium are	rento cyanide by	
Q.1 0	[1] 7n	[2] I ⁻ ions	[3] Ha	[4] None of these
0.77	The red ore of iron is		[0] 1 9	
Q.11				
0 78	The grey ore of iron is		[0] 1 e ₃ 0 ₄	
Q.70	[1] Homotito	[2] Magnotito	[3] Sidorito	[4] Limonite
0 70	If carbon is present in cast	iron in the form of comer	tite' then it is known as	
Q.13	[1] White cast iron	[2] Grov cast iron	[2] Wrought iron	[4] Nono of those
0 80	In the basic Research prov	[2] Giey Cast IIOII	ortor is lipsd with	
Q.00		[2] Crophito		[4] Noncof those
0.01	The basic Personner proc	[2] Graphile	[5] Maynesia	[4] None of these
Q.01	comparatively greater impu	rity of	or steel nom cast from is u	ised when cast iron contains
	[1] Phosphorus	[2] Manganese	[3] Carbon	[4] None of these
Q.82	Electrolytic reduction meth	od is used in the extraction	on of -	
	[1] High electronegative ele	ments	[2] High electropositive ele	ements
	[3] Transition elements		[4] Inert gases	
Q.83	Of the following, the metals	s that can not be obtained	by electrolysis of the aque	ous solution of their salts are -
	[1] Ag	[2] Mg & Al	[3] Cu	[4] Cr
Q.84	Sapphire is the mineral of -			
	[1] Cu	[2] Zn	[3] AI	[4] Mg
Q.85	The composition of the slag	g obtained in the extraction	on of copper is-	
	[1] CaSiO ₂	[2] CuSiO ₃	[3] FeSiO ₃	[4] ZnSiO ₃
Q.86	The colour of $(NH_4)_2$. Fe ₂ (SO ₄). 24H ₂ O is –		-
	[1] White	[2] green	[3] Violet	[4] Blue
Q.87	Bordeaux mixture is -			
	[1] CuSO ₄ + Lime	[2] CuSO ₄ + CuCO ₃	[3] CuSO ₄ + Na ₂ CO ₃	[4] CuSO ₄ + NaOH
Q.88	Which of the following is no	ot a method for the purifica	ation of metal?	
	[1] Baeyer's process	[2] Poling	[3] Hoope's process	[4] Liquification
Q.89	Which of the following is no	ot a correct match?		
	[1] Cu - Chalcopyrites	[2] Al- Cryolite	[3] Zn-Calamine	[4] Ag-Azurite blue
Q.90	Anode mud means			
	[1] Impure metal used as a	node		
	[2] The metal mixture colle	cted below the anode dur	ing the electrolytic refining o	of a metal
	[3] Calcium phosphate		_ , 0	
	[4] Graphite anode			

	Allbwer Key Z																								
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	3	4	1	4	2	3	3	3	1	1	1	2	1	2	2	3	2	4	1	2	3	2	3	1
Qus.	26	27	28	29	30	31	Я	я	34	53	36	37	8	39	40	41	¥	43	44	45	46	47	48	49	50
Ans.	1	2	3	3	2	3	2	3	1	3	2	3	3	3	4	3	2	3	2	2	1	1	3	3	2
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	ខ	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	1	2	2	4	1	3	4	4	1	1	4	4	4	1	2	1	2	1	4	2	1	1	3	2	2
Qus.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90										
Ans.	1	1	4	1	3	1	2	2	3	3	2	1	1	4	2										

Answer Key - 2

Q.1	Which of the following is s	slag		[CPMT 1994]
	[1] CaO	[2] CaSO₄	[3] CaSiO ₃	[4] SiO ₂
Q.2	In the metallurgy of alumi	nium, cryolite is mixed in the	e molten state because i	t [Roorkee 1995]
	[1] Increases the melting	point of alumina	[2] Oxidises alumina	
	[3] Reduces alumina		[4] Decreases the melt	ing point of alumina
Q.3	An important oxide ore of	iron is IMP PAT 1993 :	MP PET/PMT 1998: M	P PET 1990. MP PMT 1994.961
	[1] Haematite	[2] Siderite	[3] Pyrites	[4] Malachite
0.4	Cassiterite is an ore of			[CBSE 1990: Delbi PMT 1996]
4. 7	[1] Mn	[2] Ni	[3] Sh	
0.5	Which of the following is r	[2] NI nost densiest	[3] 30	
Q.J			[3] B	[4] Ph
0.6	When NaOH is prepared	the gas released is	[0] D	[CPMT 1996]
4.0	[1] Clo	[2] No	[3] O ₂	[4] H ₂ O
Q.7	Alumino-thermic process	is used for metallurgy of		[CPMT 1996]
	[1] Pb	[2] Ag	[3] AI	•[4] None of these
Q.8	Which of the following me	tals will not react with a solu	ition of CuSO	[CPMT 1996]
	[1] Fe	[2] Zn	[3] Mg	[4] Hg
Q.9	Aluminium is most abund	ant in earth crust yet it is obt	ained from bauxite beca	ause [CPMT 1997]
	[1] Bauxite is available in I	arger quantity	[2] Of easy extraction	of aluminium from it
	[3] Bauxite contains maxi	mum aluminium	[4] Bauxite is less imp	ure
Q.10	Identify the correct statem	nent		[CPMT 1997]
	[1] Elemental sodium can	be prepared and isolated by	electrolysing an aqueo	us solution of sodium chloride
	[2] Elemental sodium is a	strong oxidizing agent		
	[2] Elemental sodium is in	soluble in ammonia		
	[4] Elemental sodium is a	asily oxidized		
0 11	Among the following state	abily Unitized		[IIT 1007]
Q.11	[1] Calamine and siderite	are carbonates	[2] Argentite and cuprit	te are oxides
	[3] Zinc blende and pyrite	s are sulphides	[4] Malachite and azur	ite are ores of copper
Q.12	The only cations present i	n a slightly acidic solution ar	The Fe ³⁺ Zn^{2+} and Cu^{2+}	The reagent that when added in
	excess to this solution wo	uld identify and separate Fe	e^{3+} in one step is	[IIT 1997]
	[1] 2M HCI	[2] 6M NH ₂	[3] 6M NaOH	[4] H ₂ S gas
Q.13	Which of the following doe	es not react with AgCl		[AIIMS 1997]
	[1] NaNO ₂	[2] Na ₂ CO ₂	[3] Na ₂ S ₂ O ₂	[4] NH₄OH
Q.14	Na imparts yellow colour t	to Bunsen flame be cause of	2 2 3	[Raj. PMT 1997]
	[1] Low ionisation potentia	al	[2] Sensitivity	
	[3] Sublimation		[4] Absorbed high radia	ation
Q.15	Sn is dissolved in excess	of NaOH solution. the comp	ound obtained is	[Raj. PMT 1997]
	[1] Sn(OH) ₂	[2] Na ₂ SnO ₃	[3] Na ₂ SnO ₂	[4] SnO ₂
Q.16	Addition of high proportion	ns of manganese makes stee	el useful in making rails o	of rail-roads because manga-
	1100 hordpoor to stor		[2] Can abow highest	
	[1] Gives hardness to stee	ə əd eulobur	[2] Carl Show highest (Schallon State of + 7
0 17	Highly pure dilute solution	of sodium in liquid ammonic	ן דין אטווט טו נוופטט א	IIIT 10001
S. 17	[1] Shows blue colour		[2] Produces hydroger	
	[3] Produces sodium amic	le	[4] None of these	. 940
		~ ~	L .] . 10110 01 010000	

Q.18	Which of the following s [1] Fe ³⁺ gives brown col [2] Fe ²⁺ gives blue preci	tatement(s) is (are) correct w our with potassium fer ricyan pitate with potassium ferricya	ith reference to the ferre ide anide	ous and ferric ions [IIT [,]	1998]
	[3] Fe ³⁺ gives black cold	our with potassium thiocyana	te		
	[4] Fe ²⁺ gives brown col	our with ammonium thiocyan	ate		
Q.19	Assertion: AI(OH) ₃ is a	mphoteric in nature			
	Reason: Al - O and O -	H bonds can be broken with	equal ease in Al(OH) ₃	[IIT [,]	1998]
	[1] Both assertion and re	eason are correct and reasor	n is the correct explanat	tion of assertion	
	[2] Both assertion and re	eason are correct but reason	is not the correct expla	nation of assertion	
	[3] Assertion is correct b	out reason is incorrect			
	[4] Assertion is incorrec	t but reason is correct			
Q.20	The main salt soluble in	sea water is			1998]
	[1] MgCl ₂	[2] NaCl	[3] MgSO₄	[4] CaSO ₄	-
Q.21	Titanium containing min	eral found in our country is	1104	[Rajasthan PET 1	1999]
	[1] Bauxite	[2] Dolomite	[3] Chalcopyrites	[4] Elmanite	-
Q.22	Ore pitch blende is mair	source of		[Rajasthan PET 1	19991
-	[1] Ra	[2] Ce	[3] Th	[4] Mg	
Q.23	Main ore of aluminium is	[CPMT 1989 ,	91, 2001; Rajasthan F	PMT 1997; Rajasthan PET	1999]
	[1] Bauxite	[2] Corundum	[3] Cryolite	[4] Magnetite	-
Q.24	Galvanisation is the	[CP	MT 1980,86,91,99; MF	P PET/PMT 1988; Pb. PET 1	999]
	[1] Deposition of Zn on F	- e	[2] Deposition of Al c	on Fe	-
	[3] Deposition of Sn of F	e	[4] Deposition of Cu	on Fe	
Q.25	In the commercial electr	ochemical process for alumi	nium extraction. the ele	ectrolvte used is	19991
• •	[1] AI(OH), in NaOH sol	ution	[2] An aqueous solut	tion of $AI_2(SO_4)_2$	
	[3] A molten mixture of	Al ₂ O ₂ and Na ₂ AlFa	[4] A molten mixture	of AIO(OH) and AI(OH)	
Q.26	Percentage of lead in le	ad pencil is		ICBSE '	19991
	[1] Zero	[2] 20	[3] 80	[4] 70	
Q.27	In the oxidation of Cu. th	e reaction which takes place	in bessemer converte	ris ICPMT	19991
	[1] 2CuFeS _a + O _a \rightarrow Cl	InS + FeS + SOn	$[2] 2Cu_{o}S + 3O_{o} \rightarrow 2$	$2Cu_{0}O + 2SO_{0}$	
	$[3] 2Cu_0O + Cu_0S \rightarrow 6O$	$2 + SO_{2}$	$[4] 2\text{FeS} + 3\text{O}_{2} \rightarrow 2\text{F}$	$FeO + 2SO_{o}$	
Q.28	Which metal can't be ob	tained from electrolysis	[.]	ICPMT 1997: RPET 1	19991
	[1] Cu	[2] Ma	[3] Cr	[4] Ni	
Q 29	FeS, is	[-]9	[0] 0.	[Raiasthan PFT 19	9991
4.20	[1] Artificial silver	[2] Fool's gold	[3] Mohr's salt	[4] Cast iron]
Q.30	Which metal is soluble i	n boiling water		[Raiasthan PET 1]	9991
QIOU	[1] Bell metal	[2] Gun metal	[3] Wood metal	[4] None of these	500]
Q 31					10001
Q.01	The metal oxide which c	lecomposed on heating is		IUPSEAL *	IYYYI
	The metal oxide which c	Iecomposed on heating is			1999]
0.32	The metal oxide which c [1] ZnO Purpose of smelting of a	lecomposed on heating is [2] Al ₂ 0 ₃ an ore is	[3] CuO [MP PMT 10	[UPSEAT [4] HgO 2001: Rajasthan PMT (1999]
Q.32	The metal oxide which c [1] ZnO Purpose of smelting of a [1] To oxidise it	lecomposed on heating is [2] Al ₂ 0 ₃ an ore is	[3] CuO [MP PMT 19 [2] To reduce it	[4] HgO 990, 2001; Rajasthan PMT 2	2000]
Q.32	I he metal oxide which c [1] ZnO Purpose of smelting of a [1] To oxidise it [3] To remove vaporisabl	lecomposed on heating is [2] Al ₂ 0 ₃ an ore is le impurities	[3] CuO [MP PMT 1 9 [2] To reduce it [4] To obtain an alloy	[0PSEAT [4] HgO 990, 2001; Rajasthan PMT 2	2000]
Q.32 Q.33	I he metal oxide which c [1] ZnO Purpose of smelting of a [1] To oxidise it [3] To remove vaporisab Which ore is used for the	lecomposed on heating is [2] Al ₂ 0 ₃ an ore is le impurities e manufacture of iron	[3] CuO [MP PMT 19 [2] To reduce it [4] To obtain an alloy [CPMT	[0PSEA] [4] HgO 990, 2001; Rajasthan PMT 2 7 1973; 79; Rajasthan PET 2	2000]
Q.32 Q.33	The metal oxide which c [1] ZnO Purpose of smelting of a [1] To oxidise it [3] To remove vaporisabl Which ore is used for the [1] Cryolite	lecomposed on heating is [2] Al ₂ 0 ₃ an ore is le impurities e manufacture of iron [2] Bauxite	[3] CuO [MP PMT 19 [2] To reduce it [4] To obtain an alloy [CPMT [3] Haematite	[0PSEAT [4] HgO 990, 2001; Rajasthan PMT 2 7 1973; 79; Rajasthan PET 2 [4] Chalcopyrites	2000] 2000]
Q.32 Q.33 Q.34	The metal oxide which c [1] ZnO Purpose of smelting of a [1] To oxidise it [3] To remove vaporisabl Which ore is used for the [1] Cryolite During extraction of Fe;	lecomposed on heating is [2] Al ₂ 0 ₃ an ore is le impurities e manufacture of iron [2] Bauxite slag obtained is	[3] CuO [MP PMT 19 [2] To reduce it [4] To obtain an alloy [CPMT [3] Haematite	[0PSEAT [4] HgO 990, 2001; Rajasthan PMT 2 7 1973; 79; Rajasthan PET 2 [4] Chalcopyrites [CPMT 2	2000] 2000] 2000]

Q.35	The final step for the extr	action of copper from copper	pyrite in Bessemere cor	overter involves the reaction
	[1] $4Cu_{e}O + FeS \rightarrow 8Cu$	+ FeSO	[2] Cu ₂ S + 2Cu ₂ O \rightarrow	6Cu + SO ₂
	$[3] 2Cu_{2}O + FeS \rightarrow 4Cu$	$+ Fe + SO_{4}$	$[4] Cu_2S + 2FeO \rightarrow 20$	$C_{\rm II} + 2 FeCO + SO_{\rm c}$
Q.36	The chemical processes	in the production of steel from	n haematite ore involve	[IIT Screening 2000]
	[1] Reduction		[2] Oxidation	· · · · · · · · · · · · · · · · · · ·
	[3] Reduction followed by	voxidation	[4] Oxidation followed	by reduction
Q.37	Electrolytic reduction of a	alumina to aluminium by Hall	-Heroult process is carri	ed out in the presence of
	[1] NaCl	[2] Fluorite		[IIT Screening 2000]
	[3] Cryolite which forms	a melt with lower melting tem	perature	[
	[4] Cryolite which forms	a melt with higher melting ten	nperature	
Q.38	For which ore of the meta	al. froth floatation method is u	used for concentration	[MP PMT 2001]
	[1] Horn silver	[2] Bauxite	[3] Cinnabar	[4] Haematite
Q.39	Percentage of silver in th	e allov german silver is	[CPMT 198	5: CBSE 2000: MP PMT 20011
4.00	[1] 1 5%	[2] 2 5%	[3] 10%	[4] 0%
Q.40	A metal which is refined	by poling is	[0] 10/0	IRPET 20011
4.10	[1] Sodium	[2] Blister copper	[3] Zinc	[4] Silver
Q.41	The slag obtained during	the extraction of copper from	n copper pyrites is comp	osed mainly of
<u> </u>		IMNR 1993: N	IP PMT 1997: UPSEAT	2000. 01: IIT Screening 2001
	[1] CaSiO	[2] FeSiO	[3] CuSiO	[4] SiO ₂
Q.42	Copper sulphate solution	reacts with KCN to give	1-1-3	
	$[1]Cu(CN)_2$	[2] CuCN	$(3 K_2 [Cu(CN)_4])$	$[4] K_3[Cu(CN)_4]$
Q.43	If excess of NH₄OH is ac	ded to CuSO₄ solution, it for	rms blue coloured comp	lex which is
	7	[MP PMT	1971, 79; Bihar CEE 1	995; RPET 1999; AFMC 2001]
	[1] Cu(NH ₃) ₄ SO ₄	[2] Cu(NH ₃) ₂ SO ₄	[3] Cu(NH ₄) ₄ SO ₄	$[4] Cu(NH_4)_2 SO_4$
Q.44	Which one of the following	ng ores is a chloride		[EAMCET 1997; CPMT 2001]
	[1] Horn silver	[2] Zincite	[3] Bauxite	[4] Felspar
Q.45	Magnallium is an alloy of			[CBSE 2000; CPMT 2000,01]
	[1] Magnesium (Mg) and	aluminium (Al)	[2] Mercury (Hg) and a	lluminium (Al)
	[3] Manganese (Mn) and	aluminium (Al)	[4] Molybdenum (Mo)	and aluminium (Al)
Q.46	Froth floatation process	is used for the concentration	of	
	[CPMT 1	982, 87; MP PMT 1989; EA	MCET 1983; ; BHU 1997	7; AFMC 2000; ; MP PET 2001]
	[1] Oxide ores	[2] Sulphide ores	[3] Chloride ores	[4] Amalgams
Q.47	Heating of pyrites in air fo	or oxidation of sulphur is call	ed	
		[CPMT 1973, 75, 78, 7	79, 94; Delhi PMT 1982	, 84, 86; MP PMT 2000, 01, 02]
_	[1] Roasting	[2] Calcination	[3] Smelting	[4] Slag
Q.48	General method for the e	extraction of metal from oxide	e ore is	[CPMT 1983; MP PET 2002]
	[1] Carbon reduction		[2] Reduction by alum	inium
0.40	[3] Reduction by hydroge	en de la companya de	[4] Electrolytic reduction	
Q.49	Cupellation process is us	sed in the metallurgy of	[CPM1 1983, MP	PET 1994; MP PMT 2000, 02]
0.50				
Q.50	I ne cyanide process is u	Ised for obtaining	[CPINI 1976.84,90;1	MP PET/PMT 1998; AIEEE 2002]
0.51	[1] Na	[Z] AG		[4] ZN
G.01	in the electrolytic extract	ion of aluminium, cryolite is i	useu CPMT 1080: Paiaethan	
	[1] To obtain more alumir	nium	[2] To decrease tempe	rature to dissolve bauxite
	[3] To protect the anode	iidiii	[4] As reducing agent	

Q.52	Bauxit is an oxide ore of	[BHU 1979; AFN	IC 1980; Rajasthan PE	T 1999; CPMT 1976, 2001, 02]					
	[1] Barium	[2] Boron	[3] Bismuth	[4] Aluminium					
Q.53	Thermite is the mixture of		[BHU 1987	7; CPMT 2000. 01;AIIMS 2002]					
	[1] Cr ₂ O ₃ + Al	[2] Cu + Mg	[3] Zn + Mg	[4] Fe + Al					
Q.54	Aluminium is obtained by			[Rajasthan PMT 2002]					
	[1] Reducing Al ₂ O ₃ with c	coke	[2] Electrolysing Al_2O_3 dissolved in Na_3AlF_6						
	[3] Reducing Al ₂ O ₃ with c	hromium	[4] Heating alumina an	nd cryolite					
Q.55	Blister copper is			[CPMT 1976, 85, 2002]					
	[1] Pure copper	[2] Ore of copper	[3] Alloy of copper	[4] 1% impure copper					
Q.56	If Na is heated in presenc	e of air, it forms		[AFMC 2002]					
	[1] Na ₂ CO ₃	[2] Na ₂ O ₂	[3] Na ₂ O	[4] Both [2] and [3]					
Q.57	When metallic copper cor This is chemically known	mes in contact with moisture as	, a green powdery/pasty	coating can be seen over it. [AFMC 2002]					
	[1] Copper sulphide – Cop	oper carbonate	[2] Copper carbonate -	- Copper sulphate					
	[3] Copper carbonate – Co	opper hydroxide	[4] Copper sulphate – (Copper sulphide					
Q.58	ZnO when heated with Ba	O at 1100°C gives a compou	ind. Identify the compou	nd [AFMC 2002]					
	[1] BaZnO ₂	[2] BaO ₂ + Zn	[3] BaCdO ₂	[4] Ba + ZnO ₂					
Q.59	Colourless solutions of th copper is dipped in each of	e following four salts are pla one of these. Which solution	iced separately in four c will turn Blue	lifferent test tubes and a strip of [MP PET 2002]					
	[1] KNO ₃	[2] AgNO ₃	[3] Zn(NO ₃) ₂	[4] ZnSO ₄					
Q.60	In smelting of iron, which	of the following, reactions ta	kes place in Blast furnad	ce at 400°C - 600°C					
	$[1] CaO + SiO_2 \rightarrow CaSiO$	3	[2] 2FeS + $3O_2 \rightarrow 2Fe$	e + SO ₂					
	$[3] \text{ FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_2$	3	$[4] \operatorname{Fe}_2 \operatorname{O}_3 + 3\operatorname{CO} \to 2\operatorname{Fe}_2 \operatorname{O}_3 $	⁻ e + 3CO ₂					
Q.61	Refractory metals are use	ed in construction of furnaces	because	[CPMT 2002]					
	[1] They can withstand hig	gh temperature	[2] They are chemicall	y inert					
	[3] Their melting point is h	high	[4] None of these						
Q.62	Which of the following is r	nost reducing agent		[Rajasthan PMT 2002]					
	[1] HNO ₃	[2] Na	[3] Cl ₂	[4] Cr					
Q.63	CN ⁻ solution used in extra	action of which metal	[0] 7	[Rajasthan PMT 2002]					
0.04	[1] Ag	[2] 11	[3] Zn	[4] Sn					
Q.64	Parke's process is used t	o extract							
	[1] Silver using NaCN		[2] Copper using CuFe	lo ₂					
0.65	[3] Silver from argentilerro	NUS IEAU	[4] Silver by forming an	naigam					
Q.00	the formation of 11000			[CBSE PMT 2002]					
		$[2] K_3[CU(CN)_4]$	[3] Cu[KCu(CN) ₄]	$[4] K_2[CU(CN)_4]$					
Q.66	Zn gives hydrogen gas wi [1] NO ₂ is reduced in prefe	th H ₂ SO ₄ and HCl but not w erence to H ₃ O ⁺ han H ₂ SO, and HCl	ith HNO ₃ because	[CBSE PMT 2002]					
	[3] Zn acts as oxidising ac	gent when reacts with HNO ₂							
	[4] In electrochemical seri	ies Zn is placed above the hy	drogen						
Q.67	A process used for the co	ncentration of ore is		[MP PMT 1990; MP PET 2003]					
	[1] Froth floatation	[2] Roasting	[3] Electrolysis	[4] Bessemerization					

				Metallurgy				
Q.68	In electrolytic refining, th	e impure metal is made		[MP PET 2003]				
	[1] Cathode	[2] Anode	[3] Electrolytic bath	[4] None of these				
Q.69	Purification of aluminium	n done by electrolytic refin	ing is known as					
			[CPMT 1989; CB	E 1999; Rajasthan PET 2003]				
	[1] Serpeck's process	[2] Hall's process	[3] Baeyer's process	[4] Hoop's process				
Q.70	In the electrolytic purifica	ation of copper some gold	l is found in the [CPMT	1972; AFMC 1995; RPET 2003]				
	[1] Cathode	[2] Cathode mud	[3] Anode mud	[4] Electrolyte				
Q.71	Thomas slag is			[Rajasthan PET 2003]				
	[1] CaSiO ₃	[2] Ca ₃ (PO ₄) ₂	[3] MnSiO ₃	[4] CaCO ₃				
Q.72	Which one of the followir	ng ores is best concentrat	ed by froth-flotation method	[AIEEE 2004]				
	[1] Malachite	[2] Cassiterite	[3] Galena	[4] Magnetite				
	www		Sachino					

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	3	4	1	4	4	1	4	4	1	4	2	4	1	4	2	1	1	2	3	2	4	3	1	1	3
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	1	3	2	2	3	4	2	3	4	2	4	3	3	4	2	2	4	1	1	1	2	1	1	2	2
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72			
Ans.	2	4	1	2	4	4	3	1	2	4	1	2	1	3	2	2	1	2	4	3	2	3			

Answer Key - 3