Exercise # 1

Q.1	Half-life of a 5 gram radioad	ctive substance is 14 hours	s, then what should be the h	nalf-life of its 20 grams?			
	(1) 14 hours	(2) 56 hours	(3) 3.5 hours	(4) 25 hours			
Q.2	If a radioactive isotope disir	ntegrates 75% in two hour	s, then its half-life will be				
	(1) 1 hour	(2) 45 minutes	(3) 30 minutes	(4) 15 minutes			
Q.3	Which of the following isoto	pes is used in the therapy	of cancer?				
	(I) Co ⁶⁰	$(2) C^{12}$	(3) I ¹³¹	(4) P ³¹			
Q.4	With time, the rate of radioa	active disintegration					
	(1) decreases.	(2) increases.	(3) remains constant.	(4) can increase.			
Q.5	If half-life of a radioactive su after 560 days?	bstance is 140 days, then h	now much amount from 1 gr	am substance will disintegrate			
	(1) 0.5 g	(2) 0.25 g	(3) 1.8 g	(4) 1/16 g			
Q.6	One amu is equal to						
	(1) $1.49 \times 10^{-3} \text{ erg}$	(2) $1.49 \times 10^{-2} \text{ erg}$	(3) $1.49 \times 10^{-10} \text{ erg}$	(4) None of these			
Q.7	What is the order of a radioa	active disintegration reacti	on?				
	(I) First	(2) Second	(3) Third	(4) Zero			
Q.8	Which of the following radia	tions has maximum penet	rating power?				
	(1) α rays	(2) 'γ rays	(3) β rays	(4) Cathode rays			
Q.9	What should be the end-pro	oduct of disintegration seri	es (4n + 3)?				
	$(1)_{82} Pb^{206}$	(2) ₈₂ Pb ²⁰⁷	(3) ₈₂ Pb ²⁰⁸	(4) ₈₂ Bi ²⁰⁹			
Q.10	Ratio of $\frac{N}{P}$ for β particle en	nission					
	(1) increases.	(2) decreases.	(3) remains unchanged.	(4) None of the above.			
Q.11	Half-life of $_{90}\mathrm{Th}^{238}$ is 1.3 disintegration?	x 10 ¹⁰ year. In how muc	ch time, its 1 x 10^{-3} kg w	ill become 5 x 10 ⁻⁴ kg after			
	(1) 1.3 x 10 ⁵ year	(2) 1.3 x 10 ⁴ year	(3) 2.6 x 10 ¹⁰ year	(4) 1.3 x 10 ¹⁰ year			
Q.12			•	en house is approximately half			
	of the fresh wood. How mai	• •					
		(2) 3000 year		(4) 12000 year			
Q.13	years?	·		ance will be left behind after 40			
	(1) 12.5%	(2) 6.25%	(3) 100%	(4) 25%			
Q.14	₈₈ Ra ²²⁶ and ₈₉ Ac ²²⁷ are						
	(1) isotones	(2) isobars	(3) isotopes	(4) isoelectronic			
Q.15	Half-life of a radioisotope is	20 hours, then how much	part of this isotope will be l	eft behind after 60 minutes?			
	$(1) \frac{1}{8}$	(2) $\frac{1}{4}$	$(3) \frac{1}{3}$	$(4)\frac{1}{2}$			
Q.16	If amount of a radioactive el unit time?	lement is increased two tin	nes, then what should be th	e change in disintegration per			
	(1) Decreases half		(2) Remains unchanged				
	(3) Becomes two times		(4) Increases $\sqrt{2}$ times				

Q.17	In an atomic reactor, graph	ite is used in the form of		
	(1) lubricant	(2) fuel		
	(3) moderator	(4) in the inner coating of	f the reactor	
Q.18	From a radioactive substar	nce, $\frac{3}{4}$ disintegration occ	eurs in two hours, then its ha	alf-life will be
	(1) 30 minutes	(2) 15 minutes	(3) 60 minutes	(4) 90 minutes
Q.19	Bond energy of an element	t is 64 MeV. If bond energy	y is 6.4 MeV, then number o	of nucleons will be
	(1) 10	(2) 64	(3) 16	(4) 6
Q.20	Nucleus is unstable at wha	at ratio of $\frac{N}{P}$?		
	(1) 1.0	(2) 1.2	(3) 2.0	(4) 1.6
Q.21	What should be the number	er of a and b particles emit	tted in a nuclear reaction ₉₀	$Th^{228} \rightarrow {}_{83}Bi^{212}$?
	(1) 4 α and 1 β	(2) 3 α and 7 β	(3) 8α and 1β	(4) 1α and 4β
Q.22	Mass defect for a nuclear r	eaction is 0.01864 amu, t	hen its energy in MeV will b	oe)
	(1) 931.1	(2) 186.4	(3) 4.655	(4) 17.34
Q.23	After radioactive reaction, at the number of α and β part	•		tomic weight. What should be
	(1) 1α and 2β	(2) 1α and 1β	(3) 0 α and 2 β	(4) 1 α and 0 β
Q.24	Relationship between half-l which of the following formu		20,	onstant (λ) can be exhibited by
	(1) $\lambda = 0.693 \text{ x T}$	$(2) \lambda = 0.693 \times \lambda$	$(3) \lambda = \frac{0.693}{T}$	$(4) \lambda = \frac{693}{T}$
Q.25	Atom bomb is based on wh	nich of the following proces	sses?	
	(1) Artificial transfonnation	(2) Nuclear fission	(3) Nuclear fusion	(4) None of the above
Q.26	Haif-life of a radioactive elebehind after 40 days?	ement is 20 days. If 100 g o	of this element is taken, ther	n how much amount will be left
	(1) 25 g	(2) 2.5 g	(3) 60g	(4) 40g
Q.27	What is the second product $_{52}\mathrm{Te}^{130}$ + $_{1}\mathrm{H}^{2}$ \rightarrow $_{53}\mathrm{I}^{131}$ + ?		eaction?	
	(1) α particle	(2) Neutron	(3) Proton	(3) Positron
Q.28	Which of the following is the	e unit of radioactivity cons	tant?	
	(i) Time ⁻¹	(2) Time	(3) Mole time ⁻¹	(4) Time mole ⁻¹
Q.29	Haif-life of a radioactive element	ment is 6 months. How mu	ch time will be consumed to	reduce its initial concentration
	to $\frac{1}{16}$?			
	(i) 1 year	(2) 16 years	(3) 2 years	(4) 8 years
Q.30	Which of the following radia	ations remain unaffected b	y magnetic field, but they ha	ave high penetrating power?
	(1) Positron	(2) β rays	(3) α rays	(4) γ rays
Q.31	Radioactivity of a radioisoto	ope increases with which o	of the following?	
	(1) Temperature	(2) Pressure	(3) Chemical atmosphere	(4) None of the above
Q.32	Which of the following is us	ed to determine the age o	f archeological discoveries	?.
	$(1)_{92}U^{235}$	(2) ₆ C ¹⁴	(3) ₁ H ¹	(4) ₂₆ Fe ⁵⁶

Q.33	After removing one β particles	le from ₉₀ Th ²³⁰ , which of t	he following should be obta	ined?
	$(1)_{92}U^{234}$	(2) ₉₂ U ²³⁸	(3) ₉₁ U ²³⁴	$(4)_{82}U^{204}$
Q.34	There are two isotopes of be weight of natural boron is 1		-	(I) and 11.01 (II). If the atomic isotopes?
	(1) 10 and 90	(2) 25 and 75	(3) 20 and 80	(4) 30 and 70
Q.35	$_7$ N ¹⁴ + α \rightarrow Proton + X			
	What is X in the above reac	tion?		
	$(1)_{8}O^{16}$	(2) ₈ O ¹⁷	(3) ₈ O ¹⁸	$(4)_{8}O^{15}$
Q.36	Half-life of radioactive lead behind after 24 hours.	₈₂ Pb ²⁰¹ is 8 hours. Stariin	g from one gram of this isot	tope, how much of it will be left
	(1) 1/2 g	(2) 1/3 mg	(3) 1/8 mg	(4) 1/4 mg
Q.37	In $_{11}\text{Na}^{23}$ + $_{1}\text{H}^{1}$ \rightarrow $_{12}\text{Mg}^{23}$	+ X , what is X?		
	(1) Neutron	(2) Deuteron	(3) Positron	(4) α particle
Q.38	Half-life of a radioactive isobehind after 40 days?	otope is 20 days and weig	ght is 1 g. What should be	the weight of the element left
	(1) 0.5 g	(2) 0.25 g	0,	
	(3) 1/6 g	(4) Nothing will be ieft.		
Q.39	If half-life of 2 g isotope is 7	days, then what should b	e the half-life of 1 g substa	nce?
	(1) 7 days	(2) 14 days	(3) 35 days	(4) 28 days
Q.40	32 g of a radioactive isotope after 6 hours?	e is initially present. If its h	alf-life is 1.5 hours, then ho	w much of it will be left behind
	(1) 32 hours	(2) 2 hours	(3) 16 hours	(4) 4 hours
Q.41	₁₅ P ³¹ and a neutron are ob	tained on showering an ar	propriate radiation on ₁₃ Al	²⁸ , then the radiation conist of
	(1) proton	(2) ncutron	(3) ex. particle	(4) deuteron
Q.42	What should be the number tion?			ed in the following transforma-
		$_{92}$ U ²³⁸ $\rightarrow _{82}$ Pb ²⁰⁶ + $x(_{2}$ H	·	
	(1) 8,6	$_{92}$ U200 $\rightarrow _{82}$ PD200 + X(₂ N) (2) 2,2	(3) 6,4	(4) 8,6
Q.43	Trail life of a radio isotope is	3 30 days, then now much	of it will be left behind afte	r 100 days?
		(2) 75%	(3) 12.5%	(4) 25%
Q.44	If half-life of the radioactive time?	element radon (Rn) is 3.8	days, then 1/20 th part of it	will be left behind in how much
	(1) 1.6,days	(2) 20 days	(3) 40 days	(4) 16.4 days
Q.45	Half-life of $_{92}$ U ²³⁸ is 4.5 x 1 behind?		many year's, half of the orio	ginal amount of ₉₂ U ²³⁸ will left
	(1) 13.5 x 10 ⁹	(2) 4.5 x 10 ^{4.5}	(3) 9 x 10 ⁹	(4) 4.5 x 10 ⁹
Q.46	A sample of a rock brought 4.5×10^9 years, then what			Il amounts. If $t_{1/2}$ for uranium =
	(I) 4.5 X 10 ⁹ year	(2) 13.5 x 10 ⁹ year	(3) 9 x 10 ⁹ year	(4) 2.25 x 10 ⁹ year
Q.47	The velocity constant of a r	adioactive disintegration ((A $ ightarrow$ B) is 231 sec $^{-1}$, then i	ts half-life will be
	$(1) 3 \times 10^{-2} sec$	$(2) 3 \times 10^{-3} sec$	(3) $3.3 \times 10^{-2} \text{ sec}$	(4) $3.3 \times 10^{-3} \text{ sec}$
Q.48	3/4 part of a radioactive ele	ment disintegrates in 2 ho	ours, then its half-life will be	
	(1) I hour	(2) 45 minute	(3) 30 minute	(4) 15 minute

Q.49	Radioactivity of a radio	oactive element becomes 1.	/10 of its original radioac	tivity in 2.303 sec, then its half-life will
	(1) 2.303 sec	(2) 0.2303 sec	(3) 0.693 sec	(4) 693 sec
Q.50	If half-life of a 8.0 grar substance?	m of a radioactive isotope is	10 hours, then what sho	ould be the half-life of 2.0 gram of that
	(1) 2.5 hours	(2) 5 hours	(3) 10 hours	(4) 40 hours
Q.51		ve isotope of sodium (Na – 2 4 is added to water, then	24) is 15 hours. Sodium	forms NaOH and H ₂ on reacting with
	(1) its half-life will rem	ain unchanged	(2) its half-life will b	ecome 30 hours
	(3) its radioactivity will	l vanish	(4) its half-life will b	ecome 10 years.
Q.52	Which of the following	g can be disintegrated by slo	ow speed neutrons?	
	(1) ₉₂ U ²³⁵	(2) ₉₂ U ²³⁸	(3) ₈₂ Ra ²²⁶	(4) ₈₂ Pb ²⁰⁷
Q.53	Half-life of a radioactiv		1 gram sample is kept in	a fused tube, then how much amount
	(1) 1 g	(2) 0.5 g	(3) 0.25 g	(4) Nothing will be left
Q.54		ve isotope is 3 days. Its 3 grount of the radioactive isot	ope?	ping some amount for 12 days, then
	(1) 24 g	(2) 12 g	(3) 36 g	(4) 48 g
Q.55				be half of the radioactivity of C ₁₄ of own much old is the old grave?
	(1) 2000 years	(2) 9000 years	(3) 12000 years	(4) 6000 years

Answer Key - 1

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	1	1	1	4	1	1	2	2	2	4	3	2	1	1	4	3	3	1	1	1	4	1	3	2
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	1	2	1	3	4	4	2	3	3	2	3	2	2	2	2	2	3	4	4	4	1	2	1	3	3
Qus.	51	52	53	54	55																				
Ans.	1	1	3	4	4																				

Exercise # 2

Q.1	Radium gets changed to r	adon, then radon is the me	mber of which of the followi	ng groups?
	(1) 6	(2) 9	(3) 10	(4) 0
Q.2	In nuclear fission, energy	gets released in the form o	f	
	(1) kinetic energy	(2) potential energy	(3) electrical energy	(4) None of the above.
Q.3	Which of the following is the	he source of solar and stell	lar energy?	
	(1) Fusion of hydrogen nu	clei.	(2) Fission of hydrogen no	uclei.
	(3) Continuous combustio	n of hydrogen nuclei.	(4) None of the above.	
Q.4	Which of the following ele	ments is formed on emissi	on of b particle from 11 Na ²⁴	?
	(1) Mg	(2) Na	(3) P	(4) N
Q.5	Microcurie is equivalent to	` '	()	
	(1) 1 microbecquerel		(3) 3.7 x 10 ¹⁰ becquerel	(4) 3.7 x 10 ² becquerel
Q.6	If one proton is released o	n showering a particles on	₇ N ¹⁴ , then which of the following	owing will be formed?
	$(1)_9 F^{17}$	(2) ₈ O ¹⁷	(3) ₈ O ¹⁸	(4) ₉ F ¹⁸
Q.7	Wavelength of gamma ray	/s is		
	$(1) 10^{-7} \text{m}$	$(2) 10^{-10} \text{m}$	(3) 10 ⁻⁸ m	$(4) 10^{-12} \mathrm{m}$
Q.8	Which of the following typ	es of isotopes have low sta	ability?	
	(1) Positron-releasing	(2) a Particle-releasing	(3) Electron-releasing	(4) All of the above.
Q.9	Total binding energy of a.	particles is	70.	
	(1) 2.83 MeV	(2) 28.3 MeV	(3) 20.5 MeV	(4) 0.28 MeV
Q.10	Which of the following sub	ostances is used as fuel in	a nuclear reactor?	
	(1) Tn	(2) Zr	(3) Pu	(4) Be
Q.11	_	s is present in which of the	_	
	(1) ₈₃ Bi ²⁰⁹	(2) ₁₃ A ¹²⁷	(3) ₉₂ U ²³⁸	(4) ₂₆ Fe ⁵⁶
Q.12	•		ent in which of the following	
	(1) ₈₂ Pb ²⁰⁸	(2) ₅₀ Sn ¹¹⁸	(3) ₈₂ Pb ²⁰⁶	(4) ₅₀ Sn ¹²³
Q.13	Packing fraction is related		(0) 11	(4) 11
0.44	(1) Atomic number	(2) Mass defect	(3) Nuclear spin	(4) None of the above
Q.14	Which of the following is n		(2) 7, 67	(4) 7 ::64
0.45	(1) 30 Zn ⁶³	(2) ₃₀ Zn ⁷¹	(3) ₃₀ Zn ⁶⁷	(4) ₃₀ Zn ⁶⁴
Q.15	Which of the following sep (1) Exchange reaction	raration of isotopes?	(2) Diffusion of gases	
	(3) Electromagnetic separ	ation	(2) Diffusion of gases (4) X-ray method	
Q.16	₁₃ Al ²⁷ + ₂ He ⁴ ® ₁₄ Si ³⁰ +		(4) A-ray method	
Q.10	The above reaction is	111		
	(1) a nuclear fission	(2) a nuclear fusion	(3)an artificial transformati	ion(4) a chemical reaction
Q.17	Which of the following is n	• •	(o)arraramolar transformati	ion() a onomical reaction
	(1) Cm	(2) Md	(3) Mo	(4) Ra
Q.18	` ,	ments does not undergo di	• •	\ /
	(1) U ²³⁵	(2) U ²³⁸	(3) U ²³³	(4) U ²³⁴
Q.19	Which of the following is a	` '		. ,
	(1) Thorium	(2) Sodium	(3) Uranium	(4) Petroleum

Q.20	a-Rays are clusters of	which of the following particle	es?	
	(1) Electrons	(2) Protons	(3) W	(4) He ⁺²
Q.21	₁₃ Al ²⁷ + ₂ He ⁴ ® ₁₄ Se ³	•		
	What should be the value and that of 14 Se 30 is 29		n? Actual atomic weight of	₁₃ Ae ²⁷ isotopc is 26.9815 amu
	(1) 0.27 MeV	(2) 2.329 MeV	(3) 8.239 MeV	(4) 10.329 MeV
Q.22	Distance between the	nucleons in an atomic nucle		
	(1) 2 fermi	(2) 25 fermi	(3) 100 fermi	(4) 40 fermi
Q.23		ction is completed in 32 min		•
	(1) 16 minutes	(2) 20 minutes	(3) 8 minutes	(4) 40 minutes
Q.24	If half-life of a radioactiv	e substance is 1600 minutes	s, then how much part will be	e left behind after 6400 minutes?
	$(1)\frac{1}{16}$	(2) $\frac{1}{4}$	(3) $\frac{1}{8}$	(1)
	(1) 16	$(2) \frac{\pi}{4}$	$(3) \frac{8}{8}$	$(4)\frac{1}{2}$
Q.25	Atomic weight of radiu second from 1 gram?	m is 226 and its half-life is	1600 years, then how muc	h of it will get disintegrated per
	$(1) 4.8 \times 10^{10}$	(2) 3.7 x 10 ¹⁰	(3) 9.2 x 10 ⁶	(4) 3.7 x 10 ⁸
Q.26	Mass number of a nucl	eoid is 216, then what shoul	d be its radius in fermi?	
	(1) 6.0	(2) 7.0	(3) 8.0	(4) 7.8
Q.27	The decay constant of	a radioactive substance is 1	$.7 \times 10^{-6}$ per second, then	its half-life will be
	(1) 5 days	(2) 5 hours	(3) 5 years	(4) 5 months
Q.28	_	radioactive series is less brai		
	(1) 4n+2	(2) 4n+3	(3) 4n + 1	(4) 4n
Q.29	_	s used in the separation of ra		(A) D'
	(1) Pb	(2) Fe	(3) Ba	(4) Bi
Q.30	Which of the following s	scientists first performed arti	_	
	(1) Rutherford	(2) Mendeleef	(3) Bohr	(4) Claisen
Q.31	What time is taken by a	an element in getting 90%dis	sintegrated, if half-life of the	e element is 1.4 x 10 ¹⁰ years?
	(1) 4.6 x 10 ¹⁰ years	(2) 1.128 x 10 ⁹ years	(3) 1.128 x 10 ⁷ years	(4) 1.237 x 10 ¹⁵ years
Q.32	What is the ratio of ato	mic radius and nucleus?		
	(1) 10 ⁴ : 1	(2) 10 ⁻⁴ :1	(3) 10 ⁻² : 1	(4) 10 ³ : 1
Q.33	In ₃ Li ⁶ +	$He^4 + {}_1H^3$, what should be then	re in the blank space?	
	(1) Electron	(2) Neutron	(3) Proton	(4) Deuteron
Q.34	How much temperature	e is needed to start a nuclear	fission reaction?	
	(1) 10 ⁴ K	(2) 10 ² K	(3) 10 ⁶ K	(4) 10 ⁸ K
Q.35	The energy of a therma	ıl neutron is		
	(1) < 1 eV	(2) 1 MeV	(3) 100 eV	(4) > 1 eV

Answer Key - 2

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	4	1	1	1	1	2	4	1	2	3	1	1	2	2	4	3	3	2	3	4	1	1	1	1	2
Qus.	26	27	28	29	30	31	32	33	34	35															
Ans.	4	1	3	4	1	1	1	2	4	1															

Exercise # 3

Q.1		which of the following isotope		Kurukohotro CET 20021
		985, BHU 1995; Karnataka		_
0.0	[1] ₅₃ ¹³¹	[2] ₁₅ P ³²	[3] ₂₇ Co ⁶⁰	[4] ₁ H ²
Q.2	i ne nair life period of a r			n of the element will reduce to IP PET 1997; UPSEAT 1999]
	$[1] \frac{1}{2} g$	[2] $\frac{1}{4}$ g	[3] $\frac{1}{8}$ g	$[4] \frac{1}{16} g$
	[1] 29	$\begin{bmatrix} 2 \end{bmatrix} \frac{1}{4} g$	[3] 8 g	^[4] 16 ⁹
Q.3	During a negative β-deca	ау		[MLNR 1990; IIT 1985]
	[1] An atomic electron is	s ejected		
	[2] An electron which is	already present within the nu	ucleus is ejected	
	[3] A neutron in the nucle	eus decays emitting an elect	tron	
	[4] A part of the binding 6	energy of the nucleus is conv	verted into an electron	
Q.4	Radioactive disintegration	on differs from a chemical cha	ange in being	[MLNR 1991]
	[1] An exothermic chang	je	[2] A spontaneous proces	S
	[3] A nuclear process		[4] A unimolecular first ord	ler reaction
Q.5	Stable nuclides are thos	e whose n/p ratio is		[MP PMT 1993]
	[1] n/p = 1	[2] $n/p = 2$	[3] n/p > 1	[4] n/p < 1
Q.6	₈₉ Ac ²³¹ gives ₈₂ Pb ²⁰⁷ a respectively	after emission of some $lpha$ an	d β-particles. The number	of such ${\tt a}$ and ${\tt \beta}$ particles are
	, , , , ,		[N	MP PMT 1993; UPSEAT 2001]
	[1] 5, 6	[2] 6, 5	[3] 7, 5	[4] 5, 7
Q.7		which the same number of		elhi PMT 1982; CPMT 1994]
	[1] Protons	[2] Neutorns	[3] Protons and neutrons	[4] Nucleons
Q.8	Isotopes were discovere			[AMU 1983; AFMC]
	[1] Aston	[2] Soddy	[3] Thomson	[4] Millikan
Q.9		le ⁴ . From the above equation	on deduce the position of po	plonium in periodic table (lead
	belongs to group IV A)			[AIIMS 1980]
	[1] II A	[2] IV B	[3] VI B	[4] VIA
Q.10	The amount of ₅₃ I ¹²⁸ (t ₁	= 25 minutes) left after 50	minutes will be [AIIM	S 1982; Delhi PMT 1982,83]
	[1] One-half	[2] One-third	[3] One-fourth	[4] Nothing
Q.11	The triad of nuclei that is	s isotonic is		[IIT 1988; DCE 2000]
	[1] ¹⁴ ₆ C, ¹⁵ N, ¹⁷ ₉ F	[2] ${}^{12}_{6}$ C, ${}^{14}_{7}$ N, ${}^{19}_{9}$ F	[3] ${}^{14}_{6}$ C, ${}^{14}_{7}$ N, ${}^{17}_{9}$ F	[4] ${}^{14}_{6}$ C, ${}^{14}_{7}$ N, ${}^{19}_{9}$ F
Q.12	₉₂ U ²³⁵ belongs to group	IIIB of pertiodic table. If it los	ses one α -particle, the new	element will belong to group
	52 .	•	·	[MNR 1984; CPMT 2001]
	[1] I B	[2] IA	[3] III B	[4] V B
Q.13	Choose the element wh	ich is not radioactive	• •	[CPMT 1988]
	[1] CM	[2] No	[3] Mo	[4] Md
Q.14	$_{13}\text{Al}^{27} + _{2}\text{He}^{4} \rightarrow _{15}\text{P}^{30}$	+ ?		[CPMT 1888]
	Missing particle in the at			
	[1] ₁ e ⁰	$[2]_{-1}e^{0}$	[3] ₀ n ¹	[4] α -particle
Q.15	· ·	1	•	rity of that material will remain [MP PMT 1991]
	[1] 10%	[2] 12.5%	[3] 15%	[4] 17.5%

Q.16	The huge amount of	energy which is released durir	ng atomic fission is due to	[CPMT 1990]
	[1] Loss of mass	[2] Loss of electrons	[3] Loss of protons	[4] Loss of α -particles
Q.17	The half life period of will remain unchange		inutes. One sixteenth of the o	original quantity of the element [CPMT 1983; MP PMT 1994]
	[1] 60 minutes	[2] 120 minutes	[3] 70 minutes	[4] 75 minutes
Q.18	The half life of 92U238	is 4.5 x 10 ⁹ years. After how i	many years, the amount of $_{9}$	2U ²³⁸ will be reduced to half of
	its present amount.		J.	[CPMT 1990; MP PET 1999]
	[1] 9.0 x 10 ⁹ years	[2] 13.5 x 10 ⁹ years	[3] 4.5 x 10 ⁹ years	[4] 4.5 x 10 ^{4.5} years
Q.19	The number of $\boldsymbol{\alpha}$ and	β -particles emitted in the nucl	ear reaction $_{90}$ Th $^{228} \rightarrow _{83}$ Br	²¹² are respectively
				[MLNR 1992]
	[1] 4, 1	[2] 3, 7	[3] 8, 1	[4] 4, 7
Q.20	If an isotope of hydr respectively be	ogen has two neutrons in its	s atom, its atomic number a	and atomic mass number will [CBSE 1992]
	[1] 2 and 1	[2] 3 and 1	[3] 1 and 1	[4] 1 and 3
Q.21	After the emission of in the atom will be	one $lpha$ -particle followed by one	β-particle from the atom of $_{g}$	2X ²³⁸ , the number of neutrons [CBSE 1995]
	[1] 142	[2] 146	[3] 144	[4] 143
Q.22	Half life for radioactiv	e C^{14} is 5760 years. In how m	any years 200 mg of C ¹⁴ sai	mple will be reduced to 25 mg
	[1] 11520 years	[2] 23040 years	[3] 5760 years	[4] 17280 years
Q.23	²⁷ ₁₃ AI is a stable isoto	pe, $^{29}_{13}$ AI is expected to disint	egrate by	[IIT 1996; UPSEAT 2001]
	[1] α -emission	[2] β -emission	[3] Positron emission	[4] Proton emission
Q.24	The half life of ¹⁴ C is	about	(0)	[MP PET 1996]
	[1] 12.3 years	[2] 5730 years	[3] 4.5 x 10 ⁹ years	[4] 2.52 x 10 ⁵ years
Q.25	Radioactive iodine is	being used to diagnose the di	sease of	
	[1] Bones	[2] Kidneys	[3] Blood cancer	[4] Thyroid
Q.26		g does not take place by a-de	-	[MP PMT 1996]
	[1] ₉₂ U ²³⁸ ® ₉₀ Th ²³⁴	[2] ₉₀ Th ²³² ® ₈₈ Ra ²²⁸	[3] ₈₈ Ra ²²⁶ ® ₈₆ Rn ²²²	[4] ₈₃ Bi ²¹³ ® ₈₄ Po ²¹³
Q.27		owing statements is incorrect		[MP PET 1997]
		ated with binding energy		
	[2] Meson was discov			
		cleus is of the order of 10^{-12}		
	[4] Magnetic quantum	n number is a measure of orbit	al angular momentum of the	electron
				[MP PET/PMT 1998]
Q.28		which one of the following mov		
	[1] a-particle	[2] b-particle	[3]g-rays	[4] Positron
Q.29	Which one of the follo	owing notations shows the pro	duct incorrectly	[MP PET / PMT 1998]
	[1] $^{242}_{96}$ Cm (α , 2n) $^{243}_{97}$	3 Bk [2] $^{10}_{5}$ B(α ,n) $^{13}_{7}$ N	[3] ${}^{14}_{7}N(n, p) {}^{14}_{6}C$	[4] ²⁸ Si (d, n) ²⁹ P
Q.30	In the following nucleated N ¹⁴ + ₂ He ⁴ ® ₈ O ¹⁷ +	ar reaction · X ₁ and ₁₃ Al ²⁷ + ₁ D ² ® ₁₄ Si ²	⁸ + X ₂	
	₂₈₅ X ₁ and X ₂ are resp		۷	
	[1] ₁ H ¹ and ₀ n ¹	[2] ₀ n ¹ and ₁ H ¹	[3] ₂ He ⁴ and ₀ n ¹	[4] ₀ n ¹ and ₂ He ⁴

Q.31	₉₅ Am ²⁴¹ and ₉₀ Th ²³⁴ be	long respectively to		[MP PMT 1999]
	[1] 4n and 4n + 1 radioad	ctive disintegration series		
	[2] 4n + 1 and 4n + 2 rad	ioactive disintegration serei	S	
	[3] 4n + 1 and 4n + 3 rad	ioactive disintegration series	S	
	[4] 4n + 1 and 4n radioad	ctive disintegration series		
Q.32	In the sequence of follow	ring nuclear reactions		[MP PMT 1999]
		$_{02}X^{238}$ $-\alpha$ Y $-\beta$	$Z \xrightarrow{-\beta} L \xrightarrow{-n\alpha} {}_{84}M^{218}$	
	The value of n will be	92 / /	/ / 04	
	[1] 3	[2] 4	[3] 5	[4] 6
Q.33			of ¹³⁹ ₅₄ Xe and ⁹⁴ ₃₈ Sr from the	e absorption of a slow neutron
	by $^{235}_{92}U$, followed by ny	clear fission is		[IIT 1999]
	[1] 0	[2] 2	[3] 1	[4] 3
Q.34				ne -35 (34.96885 a.m.u.) The
	maximum energy emitte			[CBSE 1999]
	[1] 16.758 MeV	[2] 1.6758 MeV	[3] 0.16758 MeV	[4] 0.016758 MeV
Q.35	In the radioactive decay	$_{92}X^{232}$ $ _{89}Y^{220},$ how many	a and b-particles are ejecte	d from X to form Y
				[CBSE 1999]
	[1] 3a and 3β	[2] $5a$ and 3β	[3] 3α and 5β	[4] 5α and 5β
Q.36	The half-life of ₆ C ¹⁴ , if its	s λ is 2.31 x 10 ⁻⁴ , is		[CBSE 1999]
	[1] 2 x 10 ² years	[2] 3 x 10 ³ years	[3] 3.5 x 10 ⁴ years	[4] 4 x 10 ³ years
Q.37	$_{20}{\rm X}^{40}$ and $_{21}{\rm X}^{40}$ are)	[CPMT 1996]
	[1] Isobars	[2] Isotopes	[3] Isotones	[4] Isotereomers
Q.38	1 a.m.u. is equal to			
	1 40	1 (2)		00
	[1] $\frac{1}{12}$ of C ⁻¹²	[2] $\frac{1}{14}$ of O ⁻¹⁶	[3] 1 gm of H ₂	[4] 1.66 x 10 ⁻²³ kg
Q.39	Half-life of 10 gm of radio	pactive substance is 10 days	s. The half-life of 20 am is	[CPMT 1996]
-4	[1] 10 days	[2] 20 days	[3] 25 days	[4] Infinite
Q.40	Isotopes are those which		[-]	[RPMT 1997]
	[1] Same number of neut		[2] Same physical properti	
	[3] Same chemical prope		[4] Different atomic mass	
Q.41	The positron is dicovered			[RPMT 1997]
	[1] Pauling	[2] Anderson	[3] Yukawa	[4] Segar
Q.42	Positron is			[AIIMS 1997]
	[1] Electron with + ve cha	arge	[2] A helium nucleus	
	[3] A nucleus with two pr	otons	[4] A nucleus with one neu	tron and one proton
Q.43	Which is not emitted by	radioactive substance		
	[1] a-rays	[2] b-rays	[3] Positron	[4] Proton
Q.44	D ₂ O is used in			
	[1] Industry	[2] Nuclear reactor	[3] Medicine	[4] Insecticide
Q.45	₉₂ U ²³⁵ + n ® fission pro	duct + neutron + 3.20 x 10-	¹¹ J.	[CBSE 1997]
	The energy undergoes fi			
	[1] 12.75 x 10 ⁸ kJ	[2] 18.60 x 10 ⁹ kJ	[3] 8.21 x 10 ⁷ kJ	[4] 6.55 x 10 ⁶ kJ

Q.46	Number of neutrons in a	parent nucleus X, which give	es ₇ N ¹⁴ nucleus after two suc	cessive b emissions would be
	[1] 9	[2] 8	[3] 7	[4] 6
Q.47	Which of the following a	atomic mass of uranium is the	e most radioactive	[AFMC 1997]
	[1] 238	[2] 235	[3] 226	[4] 248
Q.48	What is the value of dec	cay constant of a compound h	naving half-life time $T_{1/2} = 2$.	95 days
				[AFMC 1997]
	[1] $2.7 \times 10^{-5} \text{ s}^{-1}$	[2] $2.7 \times 10^6 \text{ s}^{-1}$	[3] $2.7 \times 10^{-6} \text{ s}^{-1}$	[4] $3 \times 10^5 \times s^{-1}$
Q.49	Half-life of radium is 158	30 yrs. Its average life will be	[AIIMS 1999; A	FMC 1999; CPMT 1999]
	[1] 2.5 x 10 ³ yrs	[2] 1.832 x 10 ³ yrs	[3] 2.275 x 10 ³ yrs	[4] 8.825 x 10 ² yrs
Q.50	Half-life period of a radi	aoctive element is 10.6 yrs. I	How much time will it take in	its 99% decompostion
				[RPET 1999]
	[1] 7046 yrs	[2] 7.046 yrs	[3] 704.6 yrs	[4] 70.4 yrs
Q.51	Ehergy required to sepa	arate neutron and proton from	n the nucleus is called	[RPMT 1999]
	[1] Bond energy	[2] Nuclear energy	[3] Chemical energy	[4] Radiation energy
Q.52	Difference in ₁₇ Cl ³⁵ and	d ₁₇ Cl ³⁷ is of	*	[AFMC 2000]
	[1] Atomic number	[2] Number of protons	[3] Number of neutrons	[4] Number of electrons
Q.53	When a slow neutron g	oes sufficiently close to a U ²³	³⁵ nucleus, then the process	s which takes place is
	[1] Fusion of U ²³⁵	[2] Fission of U ²³⁵	[3] Fusion of neutron	[4] First [1] and [2]
Q.54	A wood piece is 11460 y 5730 years)	years old. What is the fraction	n of ¹⁴ C activity left in the pie	ece? (Half-life period of ¹⁴ C is [MP PMT 2000]
	[1] 0.12	[2] 0.25	[3] 0.50	[4] 0.75
Q.55	Which of the following of	does not contain number of no	eutrons equal to that of $^{40}_{18}$ A	[MP PMT 2000]
	[1] ⁴¹ ₁₉ K	[2] 43/Sc	[3] 40 Sc	[4] 42 ₀ Ca
Q.56	The half-life of ₆ C ¹⁴ , if i	ts decay constant is 6.31 x 1	0 ⁻⁴ is	[CBSE PMT 2001]
	[1] 1098 yrs	[2] 109.8 yrs	[3] 10.98 yrs	[4] 1.098 yrs
Q.57	The ₈₈ Ra ²²⁶ is			[AIIMS 2001]
	[1] n-mesons	[2] u-mesons	[3] Radioactive	[4] Non-radioactive
Q.58	Which of the following is	s used as a moderator in a nu	uclear reactor	[AIIMS 2001]
	[1] D ₂ O	[2] N ₂ O	[3] H ₂ O	[4] NaOH
Q.59	If half-life of a certain ra	adioactive nucleus is 1000 s,	the disintegration constant i	s [MP PET 2001]
	[1] $6.93 \times 10^2 \text{ s}^{-1}$	[2] 6.93 x 10 ⁻⁴ s	[3] $6.93 \times 10^{-3} \text{ s}^{-1}$	[4] 6.93 x 10 ³ s
Q.60	Which of the following is	s not deflected by magnetic fi	ield	[MP PMT 2001]
	[1] Deuteron	[2] Positron	[3] Proton	[4] Photon
Q.61	The highest binding end	ergy per nucleon will be for		[AIIMS 2001]
	[1] Fe	[2] H ₂	[3] O ₂	[4] U
Q.62	If half-life of a substanc 64 grams is	e is 5 yrs, then the total amou	unt of substance left after 15	years, when initial amount is [AIEEE 2002]
	[1] 16 grams	[2] 2 grams	[3] 32 grams	[4] 8 grams
Q.63	²²⁶ Ra disintegrates at s file of ²²⁶ Ra will be	uch a rate that after 3160 yea	rs only one-fourth of its origin	nal amount remains. The half- [MP PET 2002]
	[1] 790 yeras	[2] 3160 yeras	[3] 1580 years	[4] 6230 years

Q.64	The proper rays for rac	roper rays for radiocarbon dating are [Mil X-rays] [13] Cosmic rays [14] X-rays										
	[1] UV-rays	[2] IR-rays	[3] Cosmic rays	[4] X-rays								
Q.65	b-particle is emitted in	radioactivity by		[AIEEE 2002]								
	[1] Conversion of proto	on to neutron	[2] Form outermost orbi	t								
	[3] Conversion of neut	ron to proton	[4] b-particle is not emit	ted								
Q.66	Which of the following	are iso-electronic		[CBSE 2002]								
	[1] CO ₂ and NO	[2] SO_2 and CO_2	[3] CN and CO	[4] NO_2 and CO_2								
Q.67	Which of the following	does not contain material pa	articles	[BHU 2002]								
	[1] Alpha rays	[2] Beta rays	[3] Gamma rays	[4] Canal rays								
Q.68	The half-life of a radio	active isotope is 3 hours. Val	ue of its disintegration cons	tant is [BHU 2002]								
	[1] 0.231 per hr	[2] 2.31 per hr	[3] 0.2079 per hr	[4] 2.079 per hr.								
Q.69	87.5% decomposition	of a radioactive substance c	omplete in 3 hours. What is	the half-life of that substance								
		[MP PMT 2003]										
	[1] 2 hours	[2] 3 hours	[3] 90 minutes	• [4] 1 hours								
Q.70	Radioactive isotope of	hydrogen is	[MP PMT 2001; MP PET 2003									
	[1] Tritium	[2] Deuterium	[3] Para hydrogen	[4] Ortho hydrogen								
Q.71	Percentage of a radio	active element decayed after	20 sec when half-life is 4 se	ec. [AFMC 2003]								
	[1] 92.25	[2] 96.87	[3] 50	[4] 75								
Q.72	An element has half-li	fe 1600 years. The mass left	after 6400 years will be	[AFMC 2003]								
	[1] 1/16	[2] 1/12	[3] 1/4	[4] 1/32								
Q.73	Which can be used for	r carrying out nuclear reaction	on	[AFMC 2003]								
	[1] Uranium - 238	[2] Neptunium - 239	[3] Thorium - 232	[4] Plutonium - 239								
Q.74	23Na is the more stabl	e isotope of Na. Find out the	process by which 24 Na Ca	n undergo radioactive decay								
				[IIT Screening 2003]								
	[1] β- emission	[2] a emission	[3] b+ emission	[4] K electron capture								
Q.75		X		otope were 256g, the mass of it								
		after 18 hours would be		[AIEEE 2003]								
	[1] 4.0 g	[2] 8.0 g	[3] 12.0 g	[4] 16.0 g								
Q.76	The radionucleide $^{234}_{90}$ Th undergoes two successive b-decays followed by one a-decay. The atom											
	and the mass number	respectively of the resulting r	adionucleide are	[AIEEE 2003]								
	[1] 92 and 234	[2] 94 and 230	[3] 90 and 230	[4] 92 and 230								
Q.77	The radioisotope, tritic	um $\binom{3}{1}$ H) has a half-life of 12	2.3 yers. If the inital amount	of tritium is 32 mg. How many								
	milligrams of it would r	emain after 92 years		[CBSE 2003]								
	[1] 8 mg	[2] 1 mg	[3] 2 mg	[4] 4 mg								
Q.78	The half-life of a radioi 24 hours undecayed is	·	tial mass of the isotope was	200g, the mass remaining after [AIEEE 2004]								
	[1] 4.167	[2] 2.084 g	[3] 3.125 g	[4] 1.042 g								

Q.79 Consider the following nuclear reactions:

 $^{238}_{92}$ M ® $^{\times}_{v}$ N + 2 $^{4}_{2}$ He

^X_VN ® A L + 2b⁺

The number of neutrons in the element L is:

[AIEEE 2004]

[1] 146

[2] 144

[2] nuclear fission

[3] 140

[4] 142 [AIEEE 2005]

Q.80 Hydrogen bomb is based on the principle of

[3] artificial radioactivity

[4] nuclear fusion

A photon of hard gamma radiation knocks a proton out of ²⁴/₁₂Mg nucleus to form Q.81

[AIEEE 2005]

[1] the isobar of parent nucleus

[2] the isotope of parent nucleus

[3] the isobar of ²³₁₁Na

[1] natural radioactivity

[4] the nuclide ²³₁₁Na

In the transformation of $^{238}_{92}U$ to $^{234}_{92}U$, if one emission is an α -particle, what should be the other emission(s) Q.82

[AIEEE 2006]

[1]Two β^- and one β^+

[2] One β^- and one γ

[3] One β^+ and one β^- [4] Two β^-

A radioactive element gets spilled over the floor of a room. Its half-life period is 30 days. If the initial activity is Q.83 ten times the permissible value, after how many days will it be safe to enter the room? [AIEEE 2007]

[1] 10 days

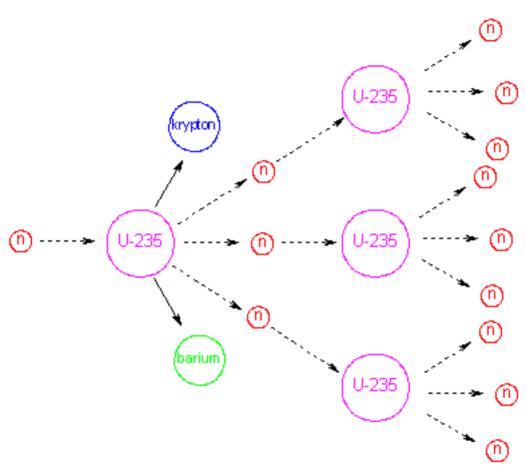
[2] 100 days

[3] 1000 days

[4] 300 days

Q.84 Which of the following nuclear reactions will generate an isotope? [AIEEE 2006]

[1] α -particle emission


[2] β -particle emission

[3] Neutron particle emission

[4] Positron emission

Answer Key - 3

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Ans.	3	4	3	3	1	2	4	2	4	3	1	3	3	3	2	1	2	3	1	4	4	4	2
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Ans.	4	4	3	1	1	2	2	4	3	1	2	1	1	1	4	2	1	4	2	3	1	2	3
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73
Ans.	2	3	2	2	3	1	3	1	2	4	4	4	3	3	3	3	3	1	4	1	2	1	4
Qus.	76	77	78	79	80	81	82	83	84														,
Ans.	3	3	3	2	4	4	4	2	3														

