

Q.1	The number of phase	ses present in colloidal solu	ution is :	
	(1) 2	(2) 4	(3) 3	(4) 1
Q.2	Butter is a colloid fo	ormed when :		
	(1) Fat is dispersed	in fat	(2) Fat is dispersed in wate	er
	(3) Water is dispers	ed in fat	(4) Suspension of casein in	nwater
Q.3	Lyophobic colloids	are :-		
	(1) Reversible	(2) Irreversible	(3) Water loving	(4) Solvent loving
Q.4	When freshly precip	pitated Fe(OH), is boiled wi	th water in the presence of fe	ew drops of dil HCI, a hydrated ferric
	oxide sol is obtaine	d. This method is termed a	as :	
	(1) Dialysis	(2) Peptization	(3) Ultrafiltration	(4) Electrodispersion
Q.5	"Greater the valenc	y, the higher is the coagula	ting power of ion. This rule v	vas introduced by :
	(1) Hardy-Schulze	(2) Graham	(3) Kossel & Lewis	(4) Faraday
Q.6	The capacity of an i	on to coagulate a collodial	solution depends on :	
	(1) Its shape		(2) The amount of its charg	je
	(3) The sign of the c	harge	(4) Both, the amount and t	he sign of the charge
Q.7	Gold number is a m	easure of :		G
	(1) The amount of g	old present in the colloidal	solution	
	(2) The amount of g	old required to break the co	blloid	N
	(3) The amount of g	old required to protect the	colloid	2
	(4) None of the abov	/e		
Q.8	On addition of one r	nl. solution of 10% NaCl to	10 ml. gold sol in presence	of 0.025 g of starch. the coagulation
	is just prevented. Th	ne gold number of starch is		
	(1) 25	(2) 2.5	(3) 0.25	(4) 0.025
Q.9	All collodial solution	ns show :		
	(1) Very high osmot	ic pressure	(2) High osmotic pressure	
0.40	(3) Low osmotic pre	ssure	(4) No osmotic pressure	
Q.10	(1) Seene	ng is associated colloid :	(2) Poth	
0.11	(1) Suaps.		0 (3) DUII	(4) NCI
Q.11	in the order .	A, B, C & Dale 0.04, 0.002	2, TO & 25 Tespectively. The	protective powers of A, B, C & D are
	(1) A > B > C > D	(2) B > A > C > D	(3) D > C> B > A	(4) C > A > B > D
Q 12	Which of the followi	ng has minimum flocculation	(0) D > 0 > D > N	
Q.112	(1) Ph^{2+}	(2) Pb ⁴⁺	(3) Sr^{2+}	(4) Na ⁺
Q.13	The charge of AS	S sol is due to the absorbe	ed :	(1).14
	(1) H ⁺	(2) OH [−]	(3) O ²⁻	(4) S ^{2–}
Q.14	The movement of di	spersion medium in an elec	tric field when the dispersed	particles are prevented from moving
	is called -			
	(1) Cataphoresis	(2) Electrophoresis	(3) Electro-osmosis	(4) Brownian movement
Q.15	To coagulate gelatin	n sol, which of the following	j is most effective :	
	(1) NaCl	(2) Na ₃ PO ₄	(3) AICI ₃	(4) Alcohol
Q.16	The potential differe	nce between the fixed chai	rged layer and the diffused la	yer having opposite charge is called
	(1) Collodial potentia	al	(2) Zeta potential	
	(3) Electrostatic pot	ential	(4) None of these	
Q.17	An example of mice	elle is :		
	(1) As ₂ O ₃ sol.		(2) Ruby glass	
_	(3) Na ₂ CO ₃ solutior)	(4) Sodium stearate conce	ntrated solution
Q.18	Brownian motion sh	nown by colloidal particle is	its property :	
• • • •	(1) Optical	(2) Electrical	(3) Kinetic	(4) Chemical
Q.19	A collodial solution	of Fe(OH) ₃ in water is :	(0) A h data 1 1 1	
	(1) A hydrophilic co	lioid.	(2) A hydrophobic colloid	
	(3) AN EMUISION		(4) INONE	

Q.20	A freshly prepared F	e(OH) ₃ precipitate is peptiz	zed by adding FeCl ₃ solution	. The charge on the collodial particle
	is due to preferentia	l absorption Of :		
	(1) Cl ⁻ ions	(2) Fe ⁺⁺⁺ ions	(3) OH ⁻ ions	(4) None
Q.21	In both dialysis and	osmosis which particle do	o not pass through SPM :	
	(1) Water	(2) Small molecules	(3) Colloids	(4) All
Q.22	Greater is the prote	ctive power of lyophilic coll	oid :	
	(1) Lesser is its gold	d no.	(2) Greater is its gold no.	
	(3) Either of the abo	ve	(4) None	
Q.23	Hardy-schulze rule	states that :		
	(1) Non-electrolytes	have better coagulating a	ction on colloids than electro	blytes
	(2) Sols are coagula	ated by effective ions whos	e charge is opposite to that o	of sol & the ions of higher charge are
	much more effective	e than the ions of lower cha	rge	
	(3) Charge of the ion	ns has no effect on the coa	agulation of a sol	
	(4) Sols are coagula	ated only by those ions wh	ose charges is similar to the	at of the sol
Q.24	The correct stateme	ent in case of milk :		0
	(1) Milk is an emuls	ion of fat in water	(2) Milk in an emulsion of p	protein in water
	(3) Milk is stabilized	l by protein	(4) Milk is stablized by fat	ろ
Q.25	A colloidal system in	nvolves :		
	(1) A state of dissol	ution	(2) A state of dipersion.	
	(3) A state of suspe	nsion	(4) None	
Q.26	The coagulating pow	ver of an effective ion carryi	ing the charge opposite to the	e sol particles has been illustrated by
	(1) Brownian moven	nent (2) Gold no	(3) Tyndall effect	(4) Schulze hardy rule
Q.27	The magnitude of c	olligative properties in all c	colloidal dispersions is	. than solution :
	(1) Higher	(2) Lower	(3) Both	(4) None
Q.28	In electrophoresis :			
	(1) Sol particles mov	ve towards opposite electro	odes	
	(2) Medium moves t	owards opposite electrode	S	
	(3) Neither (1) nor (2	2)	(4) Both (1) & (2)	
Q.29	Gelatine protects :			
	(1) Gold sol	(2) AS ₂ S ₃ sol	(3) Fe(OH) ₃ sol	(4) All
Q.30	Which metal sol car	nnot be prepared by Bredig	g's are method :	
	(1) K	(2) Cu	(3) Au	(4) Pt
Q.31	Which is the proper	ty of hydrophilic sols :		
	(1) High concentration	on of dispersed phase can	be easily attained	
	(2) Coagulation is re	versible		
	(3) The charge on p	articles depends on the pH	l of the medium and it may b	e positive, negative or zero
	(4) All			
Q.32	Detergent action of	synthetic detergents is du	e :	
	(1) Interfacial area		(2) High molecular weight	
	(3) Ionisation		(4) Emulsifying properties	
Q.33	Which is not shown	by sols :		
	(1) Adsorpfion	(2) Tyndall effect	(3) Flocculation	(4) Paramagnetism
Q.34	Which of the followi	ng is an emulsifier?		
	(1) Soap	(2) Water	(3) Oil	(4) NaCl

Q.35	Emulsifiers are generally:		
	(1) Soap (2) Synthetic detergent	(3) Lyophilic sols	(4) All of the above
Q.36	Which of the following is most effective in cau	sing the coagulation of ferrio	c hydroxide sol :
	(1) KCI (2) KNO ₃	(3) K ₂ SO ₄	(4) K ₃ Fe(CN) ₆
Q.37	On adding AgNO3 solution into KI solution, a	negtively charged colloidal s	sol is obtained when they are in:
	(1) 100 mL of 0.1 M AgNO ₃ + 100 mL of 0.1 M	/I KI	
	(2) 100 mL of 0,1 M AgNO ₃ + 50 mL of 0.2 M	KI	
	(3) 100 mL of 0.1 M AgNO ₃ + 100 mL of 0.1 M	/I KI	
	(4) 100 mL of 0.1 M AgNO ₃ + 100 mL of 0.15	MKI	
Q.38	Micelles are:		
	(1) ideal solution (2) associated colloids	(3) adsorbed surfaces	(4) adsorbent solutes
Q.39	Micelles have:		
	(1) higher colligative properties compared of c	ommon colloidal sols	
	(2) lower colligative properties		
	(3) same colligative properties	(4) none in true	
Q.40	The formation of colloidal in following Rxn is S	$SnO_2 + HCI (Excess) \rightarrow :$	•
	(1) [SnCl ₄]Cl ⁻ (2) [SnCl ₄]O ⁻²	(3) [SnCl ₄]H ⁺	(4) None
Q.41	Which of followig ion has minimum flocculation	n value:	
	(1) CI^- (2) SO_4^{-2}	(3) PO ₄ ³⁻	(4) [Fe(CN) ₆] ^{4–}
Q.42	If 1000 mg of lyophilic sol prevent the coagula	tio of 1000 mllyophilic sol th	en protaction number is:
	(1) 10 mg (2) 1 mg	(3) 25 mg	(4) None
Q.43	A negatively charged suspension of clay in wa	ater will need or precipitatior	the minimum amount of:
	(1) aluminium chloride	(2) potassium sulphate	
	(3) sodium hydroxide	(4) hydrochloric acid	
Q.44	Isoelectric point refers to the H ⁺ ion concentra	ation at which the colloidal p	articles:
	(1) Coagulate	(2) Become electrically ne	utral
	(3) Can move to either electrode when subjec	ted to an electric field	
	(4) Reverse their electrtical charge		
Q.45	Which is not a colloidal solution:		
	(1) Smoke (2) Ink	(3) Air	(4) Blood
Q.46	Which one is natural colloid:		
	(1) NaCl (2) Blood	(3) RCOONa	(4) Sugar
Q.47	Medicines are more effective if they are used	in :	
	(1) Colloidal state (2) Solid state	(3) Solution state	(4) None
Q.48	Egg albumin is :		
	(1) Reversible colloid	(2) Lyophilic colloid	
	(3) Protective colloid	(4) All	
0.42	Develop I adapted in an and the st		
Q.49	(1) Higher temperature	(2) Lower to poporative	
	(1) I lighter temperature	(2) Lower temperature	
0.50	(5) At room temperature	(4) 100-0	
ພ.ວ0	(1) Decreases with increases of processor	(2) lo independent of arrest	
	(1) Decreases with increase of pressure	(2) is independent of press	
	(5) is maximum at one atmospheric pressure	(4) Increases with increse	orpressure

Q.51	Chromatography is	a technique based on :										
	(1) Solubilities of so	lute										
	(2) Adsorption of so	lute										
	(3) Chemical adsorp	otion followed by dispersion	1									
	(4) Differential adso	rption of different constitue	uents of a mixture									
Q.52	Which of the followi	ng is not a characteristic c	f chemi-sorption :									
	(1) Adsorption is irre	eversible	(2) AH is of the order of 40) KJ								
	(3) Adsorption is sp	ecific	(4) Adsorption increases v	vith increase of surface area								
Q.53	Which one of the fo	llowing is not a correct sta	tement :									
	(1) Physical adsorp	tion is reversible in nature										
	(2) Physical adsorpt	tion involves vander waals	forces									
	(3) Rate of physical	adsorption increases with	increase of pressure on the	adsorbate								
0.54	(4) High activation e	nergy is involved										
Q.54	(4) Target a sectore 8	adsorbed on charcoal Incr	eases with :									
	(1) Temperature & p	nessure	(2) Temperature & decreas	ses with pressure								
0.55	(3) Plessure & decr	times its volume of bydros	(4) NOTIE	N								
0.00	(1) Absorption	(2) Adsorption	(3) Occlusion	(1) 2 & 3 both								
0 56	Which is correct :			(4) 2 & 3 both								
Q.00	(1) Langmuir adsor	otion is highly specific	(2) van der Walls adsorptio	on is reversible								
	(3) Both 1 & 2 are e	xothermic	(4) All are correct									
Q.57	Adsorption is accor	npanied by :										
	(1) Decrease in ent	ropy of the system	(2) Decrease in enthalpy of	of the system								
	(3) T Δ S for the proc	ess is negative	(4) All	·								
Q.58	Which charateristic	of adsorption is wrong :										
	(1) Physical adsorp	tion in general decreases	with temp.									
	(2) Physical adsorp	tion in general increases w	vith temp.									
	(3) Physical Adsorp	tion is a reversible proces	5									
	(4) Adsorption is lim	nited to the surface only										
Q.59	Which is false for c	atolyst										
	(1) A catalys can in	itiate a reaction										
	(2) It does not alter	the position of equilibrium i	in a reversible reaction									
	(3) A catalyst remai	ns unchanged in quality a	nd composition at the end o	freaction								
	(4) Catalysts are so	metimes very specific in re	espect of a reaction									
Q.60	Which acts as pror	noter for nickel in the hvdr	ogenation of oils :									
	(1) Cu	(2) Mo	(3) Fe	(4) Pt								
0.61	Which acts as pois	on for Pd-charcoal in linds	ar catalyst :									
Q.01	(1) BaSO	(2) Ouinoline	(3) Both	(1) None								
0.00	(1) $Baso_4$											
Q.62	Enzymes are know	in to increase the rate of re		(4) 4012 .:								
0.00	(1) 10 ² time	(2) 10 ⁻² times	(3) 10 ^o times	(4) 10 ¹⁴ times								
Q.63	When a catalyst inc	creases the rate of a chem	ical reaction the rate consta	ant :								
	(1) Increases	(2) Decreases	(3) Remains constant	(4) Becomes infinite								

Q.64 Air can oxidize sodium sulphate in aq. solution but cannot do so in the case of sodium arsenite. If however, air is passed through a solution containing both sodium sulphite & sodium arsenite then both are oxidized. This is an example of : (1) Positive catalysis (2) Negative catalysis (3) Induced catalysis (4) Auto catalysis Q.65 Zeolites are :-(1) Water softner (2) Catalyst (3) Both (4) None Q.66 The activity and selectivity of zeolites as catalyst is based on : (1) Their pore size (2) Size of their cavities on the surface (3) Both (4) None Q.67 Zeolites: (1) Are microporous aluminosilicates (2) Have general formula Mx/n[(AIO₂)(SiO₂)₄]mH₂O (3) Have pore sizes between 260 pm to 740 pm (4) All Q.68 Zeolites are used as catalyst in: (1) Petrochemical industries during cracking (2) In the preparation of H₂ (3) In the hydrolysis of ester (4) All Which is not the correct statement for a catalyst: Q.69 (1) It does not alter Ea (2) It provides an alternate mechanism with a lower energy of activation (3) Catalyst may form intermediates with the reactants (4) Action of enzyme catalyst is always specific Q.70 In which of the following processes, a catalyst is not used: (1) Haber's process (2) Deacon's process (3) Solvay process (4) Lead chamber process www.

														_											
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	1	3	2	2	1	4	4	1	3	3	2	2	4	3	4	2	4	3	2	2	3	1	2	1	2
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	4	2	1	4	1	4	4	4	1	4	4	4	2	2	1	4	1	1	2	3	2	1	4	2	2
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70					
Ans.	4	2	4	3	4	4	4	2	1	1	3	4	1	3	3	3	4	1	3	3					

Answer Key - 1

Q.1	Substances whose	solutions can readily diffus	se through animal membra	ances are called :	
	(1) Colloids		(2) Crystalloids		[CPMT-1984]
	(3) Electrolytes		(4) Non-electrolytes		
Q.2	The size of the coll	oidal particles is in betwee	n :-		[CPMT -1990]
	(1) 10 ⁻⁷ - 10 ⁹ cm	(2) 10 ^{–9} - 10 ^{–11} cm	(3) 10 ⁻⁵ - 10 ⁻⁷ cm	(4) 10 ⁻² - 10 ⁻³ cm	
Q.3	The size of a colloi	dal particle is :-		[MI	P, PMT -1990]
	(1) > 0.1µ	(2) 1 mµ to 0.1µ	(3) < 0.1 mµ	(4) More than 3000	mμ
Q.4	If dispersed phase	is liquid and the dispersior	n medium is solid, the coll	oid is known as :	
	(1) A sol	(2) A gel	(3) An emulsion	(4) A foam	[CBSE-1990]
Q.5	An emulsion is a co	olloidal solution consisting	of :		CPMT - 1984]
	(1) Two solids	(2) Two liquids	(3) Two gases	(4) One solid and o	ne liquid
Q.6	The colloidal solution	on of gelatin is known as :		N]	IP PMT 1990]
	(1) Solvent loving	(2) Reversible	(3) Hydrophilic	(4) All the above	
Q.7	Peptization is a pro	ocess of :		[Ro	orkee - 1992]
	(1) Precipitating the	e collodial particles		O	
	(2) Purifying the co	lloidal sol	•		
	(3) Dispersing the	precipitate in to colloidal so			
	(4) Movement of co	lloidal particles towards the	e opposite charged electro	odes	
Q.8	Colloids are purifie	d by :			[CPMT-1990]
	(1) Brownian motion	n (2) Precipitation	(3) Dialysis	(4) Filtration	
Q.9	Which of the follow	ing substance give a positi	vely charged sol :	[MF	PMT - 1990]
	(1) Gold	(2) Arsenious sulphide	(3) Starch	(4) Ferric hydroxide	<u>;</u>
Q.10	When excess of el	ectrolyte is added to a coll	oid it :		[CBSE 1990]
	(1) Coagulates	(2) Gets diluted	(3) Dissolved	(4) Does not chang	e
Q.11	Gold number is a m	neasure of the :			[CBSE 1989]
	(1) Proteclive actio	n by a lyophilic colloid on ly	ophobic colloid		
	(2) Proteclive actio	n by a lyophobic colloid on	lyophilic colloid		
	(3) Number of mg c	of gold in a standard red go	ld sol		
	(4) None of the abo	ve			
Q.12	A liquid is found to a	scatter a beam of light but le	eaves no residue when pa	ssed through the filter p	aper. The liquid
	can be described a	S :-			[AIIMS-1993]
	(1) A suspension	(2) Oil	(3) .A. collodial sol	(4) True solution	
Q.13	A catalyst is a sub	stance which :-			(IIT -1983)
	(1) Increases the e	quilibrium concentration of	the product		
	(2) Change the equ	ilibrium constant of the rea	ction		
	(3) Shortens the tin	ne to reach equilibrium			
	(4) Supplies energy	/ to the reuction			
Q.14	A catalyst :				[IIT 87]
	(1) Increases the fr	ee energy change in the re-	action		
	(2) Decreases the f	ree energy change in the re	eaction		
	(3) Does not increa	ses & decreases the free e	energy change in the reac	tion	
	(4) Can either decr	eases or increases the free	energy change dependir	ig on what catalyst we u	JSE

Q.15	A catalytic poison	renders the catalyst ineffe	ctive because :-		[Roorkee-1991]
	(1) It is preferentia	Illy adsorbed on the cataly	st		
	(2) It adsorbs the r	molecules of the reactants			
	(3) It combines ch	emically with the catalyst			
	(4) It combines wit	th one of the reactant			
Q.16	Regarding criteria	of catalysis which one of t	he following statements is	not true :	[Roorkee 1991]
	(1) The catalyst is	unchanged chemically du	ring the reaction		
	(2) A small quantit	ty of catalyst is often suffic	ient to bring about a consi	derable amount c	of the reaction
	(3) In reversible re	action, the catalyst alters t	he equilibrium position		
	(4) The catalyst ac	ccelerates the rate of react	ion		(CPMT-1990)
Q.17	Which is lyophobi	c in nature ;-			[MP PET 2002]
	(1) Gelatin	(2) Phosphorus	(3) Starch	(4) Agar-Aga	ľ
Q.18	Gelatin is mostly u	used in making ice creams	s in order to ;-		[MP PMT 98]
	(1) Prevent making	g of colloid	(2) Stabilise the colloid	and prevent crys	talisation
	(3) Stabilise the m	ixture	(4) Enrich the aroma		
Q.19	Blood may be puri	ified by :-		\frown	[MP PMT 2000]
	(1) Dialysis	(2) Electro osmosis	(3) Coagulation	(4) Filteration	า
Q.20	The slope of the s	traight line graph between	log x/m and log P for the a	adsorption of a ga	is on solid is
	(1) k	(2) log k	(3) n	(4) l/n	[CBSE PMT 94]
Q.21	The work of enzyr	mes in living system is -			(CBSE PMT-94)
	(1) Oxygen transfe)r	(2) To provide immunity	,	
	(3) To catalyse bio	o' chemical reactions	(4) To provide energy		
Q.22	A chemical reaction	on is catalysed by catalyst	X, So X		[CBSE PMT 92]
	(1) Increase the ac	ctivation energy of reaction	Q		
	(2) Does not affect	t equilibrium constant of re	action		
	(3) Decreases the	rate constant of reaction			
	(4) Decreases ent	halpy of reaction			
Q.23	When some spec	ial substances like proteir	n particles. blood corpusc	les etc. are seper	rated by a permeable
	(1) Diskusis	ocess is called :-	(2) Every solution		95, CBSE PINI 1-96)
0.24	(1) Dialysis	(2) Diffusion	(3) EXOSINOSIS	(4) Endosmo	
Q.24		concentration (CIVIC) the s	(2) Pacamaa aamplata	ly colubio	(CD3E PINIT-90)
	(1) Decomposes (2) According to a		(2) Becomes complete	ly soluble	
0.25	(3) Associates	weehultze low the order of	(4) DISSOCIATES	ang will bo :	
Q.2J	(1) No ⁺ > Bo ⁺² >	y schultze law the order of	(3) $\Lambda I^{+3} > B_{2}^{+2} > N_{2}^{+1}$	JIIS WIII DE	
	(1) Na $> Da > 7$ (3) $Ba^{+2} > Al^{+3} > 1$	יר No ⁺	(3) AI > Da > Na (A) AI+ 3 > Na+ > Ba+ 2		
0.26	Which one of the f	following method is commo	(4) Al > Na > Da	f colloid:	[CBSE PMT 2000]
Q.20	(1) Dialysis		(2) Condensation		
	(1) Dialysis (3) Filteration by a	nimal membrane	(4) By adding electroly		
0 27	How enzymes inc	reases the rate of reaction			[CBSE PMT 2000]
	(1) By lowering act	tivation energy	ς,		
	(2) By increasing a	activation energy			
	(3) By changing e	quilibrium constant			
	(4) By forming enz	zvme substrate complex			
	······································	,			

Q.28	Which is not corre	ct regarding the adsorption	of a gas on surface of solid		[CBSE PMT 2001]
	(1) On increasing t	emp. adsorption increases	continuously		
	(2) Enthalpy & ent	ropy change is -Ve			
	(3) Adsorption is m	nore for some specific subs	stance		
	(4) Reversible				
Q.29	Position of non pol	lar and palar part in micelle	es:		[CBSE 2002]
	(1) Polar at outer s	urface but non polar at inne	er surface		
	(2) Polar at inner s	urface but non polar at oute	er surface		
	(3) Distributed ove	r all the surface			
	(4) Are present in t	the surface only			
Q.30	Milk is a colloidal				[MP PMT 2002]
	(1) Liquid is disper	sed in a liquid	(2) Solid is dispersed in a	liquid	
	(3) Gas is disperse	ed in a liquid	(4) Sugar is dispersed in a	a liquid	
Q.31	Adsorbed acetic a	cid on activeted charcoal is	3:	C	[MP PMT 2002]
	(1) Adsorber	(2) Absorber	(3) Adsorbent	(4) Adsorbate	
Q.32	Who was Awarded	d Noble Prize for the study	of catalytic reactions :-	`	[PET (Bihar) 97]
_	(1) Ostwald	(2) Berzelius	(3) Vanthoff	(4) Werner	
Q.33	Colloidal particles	carry charge. This can be	shown by :		[PMT 1989]
	(1) Tyndall effect	(2) Electrophoresis	(3) Brownian movement	(4) Dialysis	
Q.34	Which forms a coll	loidal solution in water:			
	(1) NaCl	(2) Glucose	(3) Strach	(4) Barium nit	rate
Q.35	Gelatin is often us	ed as an ingredient in the n	nanufacture of ice-cream. Th	ne reason for thi	S IS - [PMT (MP) 88]
	(1) To prevent the f	formation of a colloid			
	(2) To stabilize the	colloid and prevent crystal	growth		
	(3) To cause the f	lixture to solidily			
0.36	(4) To improve the i	avour	and to KI colution in	ositivoly chorac	d col particlas of A al
Q.30	are formed due to	adsorption of ion :	-55 15 added to Ki Solution, p	Usilively charge	IMP PMT 861
	(1) KI ⁺	(2) Aq ⁺	(3) -	(4) NO ₂ -	[
Q.37	The process which	n is catalysed by one of the	e products is called	[MP PE]	199; AIIMS 2000]
	(1) Acid-base cata	lysis	(2) Autocatalysis	-	•
	(3) Negative cataly	vsis		(4) None of the	e above
Q.38	Which of the follow	ving statements about a ca	atalyst is true		[AIIMS 1996]
	(1) It lowers the en	ergy of activation			
	(2) The catalyst alt	ered during the reaction is	regenerated		
	(3) It does not alter	r the equilibrium			
	(4) All the above				
Q.39	Colour of colloidal	solution is due to			[CPMT 1996]
	(1) Different size o	f colloidal particles			
	(2) Due to formation	on of complex			
	(3) Due to formation	on of hydrated crystal			
	(4) None of the abo	ove			
Q.40	Which of the follow	ving is property of colloid			[CPMT 1996]
	(1) Scattering of lig	ght	(2) They show attraction		
	(3) Dialysis		(4) Emulsion		

Q.41	The size of particles in suspension, true soluti	ion and colloidal solution var	ies in the order	[BHU 1997]
	(1) Suspension > Colloidal > True solution			
	(2) Suspension > (Colloidal + True solution)			
	(3) True solution > Suspension > Colloidal			
	(4) None of these			
Q.42	At the critical micelle concentration, the surfa	ctant molecules		[CBSE 1998]
	(1) Decompose	(2) Dissociate		
	(3) Associate	(4) Become completely so	luble	
Q.43	The adsorption of a gas on a solid surace vari	es with pressure of the gas i	n which of the follow	/ing manner
	(1) Fast \rightarrow slow \rightarrow independent of the pressu	re		[CPMT 1999]
	(2) Slow \rightarrow fast \rightarrow independent of the pressure	9		
	(3) Independent of the pressure \rightarrow fast \rightarrow slow	N		•
	(4) Independent of the pressure \rightarrow slow \rightarrow fas	st	\mathbf{O}	
Q.44	If gold number of A, B, C and D are 0.005, 0.05 greatest protective power	5, 0.5 and 5 respectively, the	n which of the follov	ving will have the [CPMT 2000]
	(1) A (2) B	(3) C	(4) D	
Q.45	Which of the following colloids are formed wh	nen hydrogen sulphide gas	is passed through a	a cold solution of
	arsenious oxide			[CPMT 2000]
	(1) As_2S_3 (2) As_2O_3	(3) As ₂ S	(4) As ₂ H ₂	
Q.46	The movement of colloidal particles towards th	e oppsitely charged electroc	les on passing elect	ricity is known as
				[AFMC 2000]
	(1) Cataphoresis (2) Tyndall effect	(3) Brownian movement	(4) None of these	
Q.47	Which of the following is used for the destruct	ion of colloids		[CBSE 2000]
	(1) Dialysis (2) Condensation	(3) By ultrafiltration	(4) By adding elec	ctrlyte
Q.48	Brownian movement is		I	MP PET 2000]
	(1) Zig-zag motion of the colloidal particles			
	(2) Migration of colloidal particles under the in	fluence of electric field		
	(2) Scattering of light by colloidal particles			
	(4) None of these			
Q.49	Enzymes with two sites are called			[AIIMS 2002]
	(1) Apoenzyme (2) Holoenzyme	(3) Allosteric enzyme	(4) Conjugate enz	yem
Q.50	Wood charcoal is used to decolourise sugar b	because it		[CPMT 2002]
	(1) Adsorbs coloured material	(2) Absorbs decolorised m	aterial	
	(3) Reduces coloured material	(4) None of these		
Q.51	A catalyst can effect reversible reaction by	(0) O la isa (an andara ti		[CPMT 2002]
	(1) Changing equilibrium	(2) Slowing forward reaction	n	
0.50	(3) Attaining equilibrium in both direction	(4) None of these		
Q.52	Surface tension of lyophilic sols is		l	MP PMT 2002]
	(1) Lower than that of H_2O	(2) More than that of H_2O		
0.50	(3) Equal to that of H_2O	(4) None of these		
Q.53	Alum helps in purflying water by			[AIEEE 2002]
	(1) Forming Si complex with clay particles			
	(2) Supnate part which combines with the dirt	and removes it		
	(3) Aluminium which coagulates the mud part	ICIES		
	(4) Making mud water soluble			

Q.54	The The catalyst u	sed in the manufacture of	methanol from water gas is		[MP PET 2002]
	(1) V ₂ O ₅	(2) Ni + Mo	(3) ZnO + Cr_2O_3	(4) Pt + W	
Q.55	Which one of the fo	ollowing is an incorrect sta	tement for physisorption		[MP PET 2002]
	(1) It is a reversible	process	(2) It requires less heat of	adsorption	
	(3) It requires activa	ation energy	(4) It takes place at low te	emperature	
Q.56	Which one of the fo	ollowing charactersistics is	s not correct for physical ads	orption	[AIEEE 2003]
	(1) Adsorption on s	olids is reversible			
	(2) Adsorption incre	eases with increase in tem	perature		
	(3) Adsorption is sp	oontaneous			
	(4) Both enthalpy a	nd entropy of adsorption a	ire negative		
Q.57	Surface wtater				[AFMC 2003]
	(1) Salt		(2) Salt and organic comp	ound	
	(3) Organic compo	unds	(4) Suspended impurities		•
Q.58	Sodium lauryl sulp	hate is			
	(1) Cationic sol		(2) Anionic sol		
	(3) Neutral sol		(4) None of these	•	
Q.59	Which of the follow	ing does not form sol		5	[MP PET 2003]
	(1) Electrophoresis	(2) Peptization	(3) Electrical disintegratio	n (4) Solvent excl	nange
Q.60	Which of the follow	ing is not an emulsion			[EAMCET 2003]
	(1) Butter	(2) Ice cream	(3) Milk	(4) Cloud	
Q.61	Which of the follow	ring reaction is catalysed b	by enzyme maltase		[CBSE 1994]
	(1) Starch \rightarrow malto	se	(2) Maltose \rightarrow Glucose		
	(3) Lactose \rightarrow malt	tose	(4) Maltose \rightarrow glucose +	fructose	
Q.62	The volume of a co	lliodal particle, V _C as com	pared to the volume of a solu	ite particle in a ture	e solution V_S , could
	be				[AIEEE 2005]
	Vo aa	Ve	Vo	Vo	
	(1) $\frac{V_{c}}{V_{s}} \approx 10^{23}$	(2) $\frac{10}{V_s} \approx 1$	(3) $\frac{V_{\rm C}}{V_{\rm S}} \approx 10^3$	(4) $\frac{V_{c}}{V_{s}} \approx 10^{-3}$	
0.00	Which is true chas		0	U	
Q.63	(4) It is improved to be	t lyophilic sol ?	(0) It can be consulated in		
	(1) It is irreversible		(2) It can be congulated in	i presence of elec	trolyte
0.64	(3) It is sell-stabilis		(4) Formed by inorganic's	substance	
Q.04	In Langmuir S mod	et of adsorption of a gas of		leavies at the ser	
		at a single site on the suff	ace may involve multiple mo	necules at the sar	
	[2] The mass of gas	s surking a given area of s	surface is proportional to the	pressure of the ga	15
	[5] The mass of gas	s surking a given area of s	unace is independent of the	pressure of the ga	15
	[4] The rate of diss	ociation of adsorbed mole	cules from the surface does	not depend on the	surface coverd

	-																								
Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ans.	2	3	2	2	2	4	3	3	4	1	1	3	3	3	1	3	2	3	2	1	4	3	2	1	3
Qus.	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Ans.	2	4	1	1	1	4	2	2	3	2	2	2	4	1	1	1	3	1	1	1	1	4	1	3	1
Qus.	51	52	53	54	55	56	57	58	59	60	61	62	63	64											
Ans.	3	1	3	3	3	2	4	1	1	4	2	3	3	2											

Answer Key - 3